Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering Breakthrough Develops Artificial Neuron that ’Learns’

02.07.2004


University of Idaho’s Richard Wells and his microelectronics research team are helping usher in the age of real electronic brains.

UI researchers envision computers one day built from artificial neurons bundled together into networks that can perform tasks onerous to humans, such as dangerous military tactics, automated traffic and emergency dispatching, smart cars that drive themselves and eventually bio-medical applications and prosthetics.

"Our fundamental research on artificial neurons mimics biology and lays the foundation for a complete departure in computing from today’s chip design," says Wells. Information is carried by trains of electrical pulses and codes superior in performance to traditional analog-digital integrated circuitry.



"The low-power technology is miniaturized to a scale approximately the size of a few animal cells per neuron and performs sensing, information processing, routing and actuation, much like the brain or spinal cord." In fact, Wells’ "biomimic artificial neuron" is the basic building block for machines that learn on their own, without the need of programming.

The way this works is through special kinds of interconnections linking groups of biomimic neurons, called “performance feedback signals.” These connections cause other types of connections to become modified in response to these signals. Basically, these signals measure the “goodness” or “badness” of the machine’s output responses to input stimuli. This kind of machine is “trained” instead of programmed.

Wells’ team includes UI engineering faculty members James Frenzel, Terry Soule, James Foster and many of their students. The team has been developing this technology for neuro-fuzzy logic over the past 2 ½ years. This type of “neurocomputer” deals with uncertainty, the missing function of traditional programmed integrated circuitry.

A patent is pending on the biomimic artificial neuron, and the Idaho Research Foundation offers it to interested industry by way of a license agreement. Wells believes it will have special appeal to manufacturing, computing, electronics, space and transportation industries.

"This is a radically different turn in computing hardware technology that will enable companies to design and fabricate their own chip solutions for developing market needs," adds Wells.

Interested industries may contact the IRF, the technology transfer agent of UI. It facilitates commercial and public use of technology developed by UI researchers, patents and licenses UI technologies to private industry in return for royalties, and distributes the royalties to inventors and their colleges. IRF licensees include companies worldwide, and a growing number of ventures in and around the Pacific Northwest.

The Idaho Research Foundation, Inc. is a not-for-profit corporation chartered in Idaho in 1947 to support scientific research and education at the University of Idaho. UI appointed the IRF as its exclusive agent for technical intellectual property and licensing. The IRF fosters and promotes scientific research and inventions and their timely commercial transfer. It also seeks maximum returns to the inventors and the UI, in sound, ethical, legal, and academic fashions.

William Loftus | newswise
Further information:
http://www.uidaho.edu

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>