Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineering Breakthrough Develops Artificial Neuron that ’Learns’


University of Idaho’s Richard Wells and his microelectronics research team are helping usher in the age of real electronic brains.

UI researchers envision computers one day built from artificial neurons bundled together into networks that can perform tasks onerous to humans, such as dangerous military tactics, automated traffic and emergency dispatching, smart cars that drive themselves and eventually bio-medical applications and prosthetics.

"Our fundamental research on artificial neurons mimics biology and lays the foundation for a complete departure in computing from today’s chip design," says Wells. Information is carried by trains of electrical pulses and codes superior in performance to traditional analog-digital integrated circuitry.

"The low-power technology is miniaturized to a scale approximately the size of a few animal cells per neuron and performs sensing, information processing, routing and actuation, much like the brain or spinal cord." In fact, Wells’ "biomimic artificial neuron" is the basic building block for machines that learn on their own, without the need of programming.

The way this works is through special kinds of interconnections linking groups of biomimic neurons, called “performance feedback signals.” These connections cause other types of connections to become modified in response to these signals. Basically, these signals measure the “goodness” or “badness” of the machine’s output responses to input stimuli. This kind of machine is “trained” instead of programmed.

Wells’ team includes UI engineering faculty members James Frenzel, Terry Soule, James Foster and many of their students. The team has been developing this technology for neuro-fuzzy logic over the past 2 ½ years. This type of “neurocomputer” deals with uncertainty, the missing function of traditional programmed integrated circuitry.

A patent is pending on the biomimic artificial neuron, and the Idaho Research Foundation offers it to interested industry by way of a license agreement. Wells believes it will have special appeal to manufacturing, computing, electronics, space and transportation industries.

"This is a radically different turn in computing hardware technology that will enable companies to design and fabricate their own chip solutions for developing market needs," adds Wells.

Interested industries may contact the IRF, the technology transfer agent of UI. It facilitates commercial and public use of technology developed by UI researchers, patents and licenses UI technologies to private industry in return for royalties, and distributes the royalties to inventors and their colleges. IRF licensees include companies worldwide, and a growing number of ventures in and around the Pacific Northwest.

The Idaho Research Foundation, Inc. is a not-for-profit corporation chartered in Idaho in 1947 to support scientific research and education at the University of Idaho. UI appointed the IRF as its exclusive agent for technical intellectual property and licensing. The IRF fosters and promotes scientific research and inventions and their timely commercial transfer. It also seeks maximum returns to the inventors and the UI, in sound, ethical, legal, and academic fashions.

William Loftus | newswise
Further information:

More articles from Information Technology:

nachricht New 3-D wiring technique brings scalable quantum computers closer to reality
19.10.2016 | University of Waterloo

nachricht Quantum computers: 10-fold boost in stability achieved
18.10.2016 | University of New South Wales

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>