Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Darpa Funds New Photonic Research Center at Illinois

22.06.2004


The University of Illinois at Urbana-Champaign has received a grant from the Defense Advanced Research Projects Agency to create a photonic research center to develop ultra-fast light sources for high-speed signal processing and optical communications systems. The grant will provide $6.2 million in funding over four years.

The Hyper-Uniform Nanophotonic Technology Center is directed by Norman K.Y. Cheng, a professor of electrical and computer engineering and a researcher at the university’s micro and nanoelectronics laboratory. Illinois is the lead university for the center. Partner institutions are Columbia University, the Georgia Institute of Technology and Harvard University.

"The HUNT Center’s mission is to develop critical technologies - including hyper-uniform nanophotonic fabrication methods, high-performance quantum dot arrays and ultra-fast lasers - for optoelectronic interconnects," Cheng said. "The center will address the high-performance optical switching and data routing technologies needed for flexible connections-on-demand and efficient bandwidth delivery in next-generation communications systems."



A primary focus of the center is improvement in laser technology that is now feasible due to the ultra-fast light-emitting transistor, recently discovered by center researchers Milton Feng and Nick Holonyak Jr. The light-emitting transistor can modulate both electrical and optical signals simultaneously, and could extend the modulation bandwidth of a semiconductor light source from 20 gigahertz to more than 100 gigahertz. Faster signal processing and information transfer would result.

The development of long-wavelength quantum-dot microcavity laser technologies would facilitate large-capacity seamless communications, Cheng said. Researchers at the center will explore ways to improve the size, distribution and optical quality of quantum dots that could be incorporated into the active region of light-emitting-transistor-based lasers and long-wavelength quantum-dot lasers. Proposed techniques include nanoscale semiconductor growth and characterization, nanopatterning, and nanostructure device design and fabrication.

James E. Kloeppel | ctm
Further information:
http://www.uiuc.edu

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>