Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fresh Mesh: A New Route to Smaller 3-D Files

16.06.2004


Graphics Breakthrough Can Benefit Cartoon and Game Creators, Web Marketers, Virtual Museums and Others


Simplifying by condensing small triangles (colored) into larger ones, and then into polygons



A University of Southern California computer scientist has created a powerful and elegant algorithm to compress the large and ungainly files that represent 3-D shapes used in animations, video games and other computer graphics applications.

Mathieu Desbrun, assistant professor of computer science at the USC Viterbi School of Engineering says that digital sound, pictures and video are relatively easy to compress today but that the complex files of 3-D objects present a much greater challenge.


“We simply did not have the tools to deal efficiently and accurately with three-dimensional digital geometry," he says. Desbrun will present his solution to the problem at this summer’s 2004 SIGGRAPH convention in Los Angeles.

His "Variational Shape Approximation" scheme created with two collaborators produces simplified but highly accurate "meshes" representing 3-D shapes. The meshes are orders of magnitude smaller than those produced by existing ways of handling such files but remain completely compatible with all widely used methods to display and use the information.

“The beauty of their approach,” says Professor Peter Schˆder of Caltech, who is leader of the Multi-Res modeling group and an expert in the field, “lies in its robustness, solid mathematical foundations, and speed for (very complex) geometries of interest.”

Computer applications depending on 3-D representations of objects are increasing rapidly:
  • Retailers are starting to use them to display products on websites so that viewers can manipulate and view then from alternate angles, offering unrivaled interactivity in comparison to still images.

  • Museums now put sculptures, vases, carvings and other 3-D images online so that visitors can virtually walk around them and examine details closely from many angles.

  • Designers of cartoon characters or video games use them so that they can instantly present, for example, Shrek’s face from above, from the side, from below, or even from the point of view of an ant walking on it.

  • Industrial designers now routinely use computer aided design (CAD) software to directly create 3-D objects in computers.

For all these uses and others, more compact files will facilitate the sharing and processing of virtually any geometric dataset.

The 33-year-old Desbrun, who won the "Significant New Researcher" Award at the 2003 ACM SIGGRAPH conference, is a member of the Viterbi School’s National Science Foundation-funded Integrated Media Systems Center. He worked with two former post doctoral researchers – Pierre Alliez, now with France’s INRIA (National Institute for Research in Information and Automation); and David Cohen-Steiner, now of Duke University.

Desbrun says that the data output from current 3-D scanners consists of a mesh of connected triangles and has many more triangles than is necessary to represent the shape. The data is redundant and costly to further process.

"Even if a region is completely flat," Desbrun says, "it may be scanned into a bunch of uneven triangles, adding unnecessary complexity."

Desbrun explains that his accomplishment was to simplify such a mesh, by combining as many of the little triangles as possible into larger elements without compromising the actual shape. Nearly flat regions are efficiently represented by one large, flat mesh element while curved regions require more mesh elements.

Computer scientists have struggled with the problem of finding an optimal mix of large and small elements for years. In 1998, theoreticians proved that the problem was "NP hard" — that no general solution exists that can be solved by a computer in finite length of time. They did find work-arounds: fast methods to simplify meshes, which were unable to guarantee accuracy, and accurate techniques, which were too slow.

The Desbrun team’s novel approach comes from the seemingly unrelated field of machine learning using a technique invented in 1959 called “Lloyd Clustering” named after its inventor Stuart Lloyd. Desbrun’s algorithm uses it to automatically segment an object into a group of non-overlapping connected regions – an instant draft alternative to the too-numerous triangles of the original scan.

Then the method provides a fast and accurate way to test these alternative larger regions – called proxies – for their fit to the object, and successively optimize them in a small number of iterations. The process also allows direct manipulation of the results for special purposes by the user – making it a very convenient tool for digital artists in animation studios. The user can select particular areas of a 3-D representation to make them either less or more detailed, or to emphasize them.

"For instance, when approximating a human face with very few proxies, the eyes may not be apparent." But a user can adjust the technique to fine-tune the eye region while leaving other areas in rougher form.

The method also allows users to fine tune areas where the method has reached a dead end by giving hints, in the form of a “seed triangle.”

The proxy representation, once refined, is then reconverted into a now-optimized mesh -- but not necessarily a mesh of triangles. The technique turns them instead into an assortment of polygons -- some triangles, but also four, five, six or more sided figures that more efficiently represent the shape. These in turn feed seamlessly into standard software to represent 3-D shapes on computer screens, or for other uses.

“This is not a hack,” says another expert, in the field GÈrard Medioni, professor of computer science and chair of the department at the Viterbi School, using the term for a makeshift, unsystematic improvisation. “It has a strong formal basis. You can make up extreme cases that will trick it, but for ordinary shapes, it works remarkably well."

"We believe this approach to geometry approximation offers both solid foundations and unprecedented results," said Desbrun. "Combined with the other recent advances of our research lab on mesh compression, it is a significant step to facilitate use of 3-D geometry in many areas."

Eric Mankin | UCS
Further information:
http://www.usc.edu/dept/engineering/news/2004_stories/2004_06_15_desbrun.html

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>