Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fresh Mesh: A New Route to Smaller 3-D Files

16.06.2004


Graphics Breakthrough Can Benefit Cartoon and Game Creators, Web Marketers, Virtual Museums and Others


Simplifying by condensing small triangles (colored) into larger ones, and then into polygons



A University of Southern California computer scientist has created a powerful and elegant algorithm to compress the large and ungainly files that represent 3-D shapes used in animations, video games and other computer graphics applications.

Mathieu Desbrun, assistant professor of computer science at the USC Viterbi School of Engineering says that digital sound, pictures and video are relatively easy to compress today but that the complex files of 3-D objects present a much greater challenge.


“We simply did not have the tools to deal efficiently and accurately with three-dimensional digital geometry," he says. Desbrun will present his solution to the problem at this summer’s 2004 SIGGRAPH convention in Los Angeles.

His "Variational Shape Approximation" scheme created with two collaborators produces simplified but highly accurate "meshes" representing 3-D shapes. The meshes are orders of magnitude smaller than those produced by existing ways of handling such files but remain completely compatible with all widely used methods to display and use the information.

“The beauty of their approach,” says Professor Peter Schˆder of Caltech, who is leader of the Multi-Res modeling group and an expert in the field, “lies in its robustness, solid mathematical foundations, and speed for (very complex) geometries of interest.”

Computer applications depending on 3-D representations of objects are increasing rapidly:
  • Retailers are starting to use them to display products on websites so that viewers can manipulate and view then from alternate angles, offering unrivaled interactivity in comparison to still images.

  • Museums now put sculptures, vases, carvings and other 3-D images online so that visitors can virtually walk around them and examine details closely from many angles.

  • Designers of cartoon characters or video games use them so that they can instantly present, for example, Shrek’s face from above, from the side, from below, or even from the point of view of an ant walking on it.

  • Industrial designers now routinely use computer aided design (CAD) software to directly create 3-D objects in computers.

For all these uses and others, more compact files will facilitate the sharing and processing of virtually any geometric dataset.

The 33-year-old Desbrun, who won the "Significant New Researcher" Award at the 2003 ACM SIGGRAPH conference, is a member of the Viterbi School’s National Science Foundation-funded Integrated Media Systems Center. He worked with two former post doctoral researchers – Pierre Alliez, now with France’s INRIA (National Institute for Research in Information and Automation); and David Cohen-Steiner, now of Duke University.

Desbrun says that the data output from current 3-D scanners consists of a mesh of connected triangles and has many more triangles than is necessary to represent the shape. The data is redundant and costly to further process.

"Even if a region is completely flat," Desbrun says, "it may be scanned into a bunch of uneven triangles, adding unnecessary complexity."

Desbrun explains that his accomplishment was to simplify such a mesh, by combining as many of the little triangles as possible into larger elements without compromising the actual shape. Nearly flat regions are efficiently represented by one large, flat mesh element while curved regions require more mesh elements.

Computer scientists have struggled with the problem of finding an optimal mix of large and small elements for years. In 1998, theoreticians proved that the problem was "NP hard" — that no general solution exists that can be solved by a computer in finite length of time. They did find work-arounds: fast methods to simplify meshes, which were unable to guarantee accuracy, and accurate techniques, which were too slow.

The Desbrun team’s novel approach comes from the seemingly unrelated field of machine learning using a technique invented in 1959 called “Lloyd Clustering” named after its inventor Stuart Lloyd. Desbrun’s algorithm uses it to automatically segment an object into a group of non-overlapping connected regions – an instant draft alternative to the too-numerous triangles of the original scan.

Then the method provides a fast and accurate way to test these alternative larger regions – called proxies – for their fit to the object, and successively optimize them in a small number of iterations. The process also allows direct manipulation of the results for special purposes by the user – making it a very convenient tool for digital artists in animation studios. The user can select particular areas of a 3-D representation to make them either less or more detailed, or to emphasize them.

"For instance, when approximating a human face with very few proxies, the eyes may not be apparent." But a user can adjust the technique to fine-tune the eye region while leaving other areas in rougher form.

The method also allows users to fine tune areas where the method has reached a dead end by giving hints, in the form of a “seed triangle.”

The proxy representation, once refined, is then reconverted into a now-optimized mesh -- but not necessarily a mesh of triangles. The technique turns them instead into an assortment of polygons -- some triangles, but also four, five, six or more sided figures that more efficiently represent the shape. These in turn feed seamlessly into standard software to represent 3-D shapes on computer screens, or for other uses.

“This is not a hack,” says another expert, in the field GÈrard Medioni, professor of computer science and chair of the department at the Viterbi School, using the term for a makeshift, unsystematic improvisation. “It has a strong formal basis. You can make up extreme cases that will trick it, but for ordinary shapes, it works remarkably well."

"We believe this approach to geometry approximation offers both solid foundations and unprecedented results," said Desbrun. "Combined with the other recent advances of our research lab on mesh compression, it is a significant step to facilitate use of 3-D geometry in many areas."

Eric Mankin | UCS
Further information:
http://www.usc.edu/dept/engineering/news/2004_stories/2004_06_15_desbrun.html

More articles from Information Technology:

nachricht Fingerprints of quantum entanglement
16.02.2018 | University of Vienna

nachricht Simple in the Cloud: The digitalization of brownfield systems made easy
07.02.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>