Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-dimensionally images in magnetic resonance

15.06.2004


In the near future, images obtained from magnetic resonance will be common. The aim of the TRAC project is to be able to see internal organs 3-dimensionally using a non-invasive technique. Currently images of the liver are being worked with, but it is hoped that the technique will be useful for any internal structure or tissue.




Vicomtech is one of the enterprises located in the Miramón technological Park. Here they work with, amongst other things, computer-treated images. One of the lines of research currently being undertaken is medical applications and it is here the TRAC project becomes involved. For the moment they are working on the treatment of images of the liver.

The aim of the TRAC project is the creation of a prototype based on reality techniques which enable doctors to obtain 3-D images of patients’ internal organs. The idea is that the prototype will help in planning and developing operations.


In magnetic resonance, an image of the liver is obtained in cross-section, normally every three millimetres. These bidimensional images are printed separately on to acetate and it is the medical consultant, on examining them, who makes a mental representation of the volume of the liver, in three-dimensional terms, based on her or his knowledge and experience.

In order to create images directly in three dimensions, one starts with the two-dimensional ones obtained with the resonance. First, by means of a computer, filters are applied in order to eliminate noise and to highlight the principal features; the right filter has to be applied, because it is also necessary to see to the most important details. Then mathematical segmentation algorithms are applied. The aim of the segmentation is to identify and lift the liver surface from the resonance images. This is the key step in the process, given that the liver is a large and complex organ. Finally, reconstruction algorithms in three dimensions are applied to these results.

With these images the doctors can study the external anatomy of the patient’s liver in more detail and the extent of the damage. Moreover, when the capacity for detail of the system is increased, the liver interior may be explored; blood vessels, tumours, etc.

The project has a second part which employs reality techniques carried out in the operating theatre. The aim of this is to see the operating theatre. For this to happen, a number of steps have to be followed.

The development and research for all this project is being undertaken by Vicomtech, but there are also collaborating bodies: STT, which develops and markets monitoring systems; BILBOMATICA, specialists in the handling of medical data bases, and finally, the results are supervised by a group of specialist from the Hospital de Cruces (Bilbao) for their verification and usefulness. It is a team of doctors which give the green light, as it were, for the product.

The best thing, without any doubt, is not to have the need to carry out a scanner operation and doctors will be able to have much more detailed information once the project has been developed.

Eneko Imaz | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=506&hizk=I
http://www.vicomtech.es

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>