Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA researchers customize "lab-on-a-chip" technology to help protect future space explorers and detect life forms on Mars

02.06.2004


With a microscope and computer monitor, researchers at NASA’s Marshall Space Flight Center in Huntsville, Ala., watch fluorescent bacteria flow through tiny, fluid highways on a dime-sized lab on a chip.


Researcher examines lab on a chip (NASA/MSFC/D.Stoffer)



Lab-on-a-chip technology allows chemical and biological processes -- previously conducted on large pieces of laboratory equipment -- to be performed on a small glass plate with fluid channels, known to scientists as microfluidic capillaries.

"We are studying how lab-on-a-chip technology can be used for new tools to detect bacteria and life forms on Earth and other planets and for protecting astronauts by monitoring crew health and detecting microbes and contaminants in spacecraft," explains Dr. Helen Cole, project manager for the Lab-on-a-Chip Applications Development program.


The chips are made with the same micro-fabrication technique used to print circuits on computer chips. Chemicals and fluid samples can be mixed, diluted, separated, and controlled using channels or electrical circuits embedded in the chip. On Earth, some basic lab-on-a-chip technology approaches are being used for commercial, medical diagnostic applications, such as an in-office test for strep throat, or modern in-home pregnancy tests. These applications conduct a test and yield results in a short time, with a hand-held portable device containing a simple chip design.

"NASA requires complex lab-on-a-chip technology, so scientists can conduct multiple chemical and biological assays or perform many processes on a single chip," says Cole. "Current commercial devices are not designed to work in space, so we are developing a set of unique chips along with a corresponding miniaturized controller and analysis unit.

NASA researchers are developing complex, portable microarray diagnostic chips to test for all the genes and DNA responsible for determining the traits of a particular organism, detect specific types of organisms, or use biosensor-like probes such as antibodies to detect molecules of interest. By applying this technology in laboratories and in the field where organisms live in extreme environments on Earth, astrobiologists can compare Earth-life with that which may be found on other planets. "The micro array chip system developed to go to Mars will be lightweight, portable and capable of detecting organic molecules," says Dr. Lisa Monaco, the project scientist for the Lab-on-a-Chip Applications Development program. "This instrumentation can easily be adapted for monitoring crew health and their environment."

Since the chips are small, a large number of them can be carried on a Mars rover to search for life or on carried on long-duration human exploration missions for monitoring microbes inside lunar or Martian habitats.

"We need customized microarray chips to find and characterize life at remote places on Earth, Mars, and other places in the solar system," says Dr. Andrew Steele, a scientist at the Carnegie Institution of Washington, a private research organization. Steele, the principal investigator for the Modular Assays for Solar System Exploration (MASSE) project, is working with Marshall scientists and engineers to develop the technology and instruments needed to analyze samples quickly and produce images of samples.

"When astrobiologists study life in extreme environments - whether it lives deep in the ocean, in Antarctica, or on Mars - they need a handheld device or something that can fit on a small robot," Steele explains. "We also need to be able to analyze the tests as quickly as possible within periods from 1 to 24 hours. Marshall is one of just a few places in the world developing these specific technologies for space and exploration applications and has unique experience in miniaturizing these instruments and designing them for the harsh space environment."

The Marshall Center team is collaborating with scientists at other NASA centers and at universities to design chips for many applications, such as studying how fluidic systems work in spacecraft and identifying microbes in self-contained life support systems. To make customized chips for these various applications, NASA has an agreement with the U.S. Army’s Microdevices and Microfabrication Laboratory at Redstone Arsenal in Huntsville. The lab-on-a-chip research is funded by NASA’s Biological and Physical Research Enterprise through the Marshall Center’s Microgravity Science and Applications Division.

Steve Roy | MSFC
Further information:
http://www.msfc.nasa.gov/news/news/releases/2004/04-156.html

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>