Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


’Heads-up’ display lives up to its name


The head-mounted components of the Wearable Low Vision Aid. Shown are the camera with a ring of IR LEDs (left) and the head mounted display (right).
Credit: Human Interface Technology Laboratory at the University of Washington.

Student-designed device helps the visually impaired avoid hazards, day and night

Using a common laptop computer and a sophisticated head-mounted projection device, students at the University of Washington (UW) have created a system to help people with poor vision navigate around stationary objects.

The Wearable Low Vision Aid (WLVA) is the first portable device to draw attention to obstacles using an illuminated, vibrating crystal that projects a warning icon-a raster image much like a television’s-onto the user’s retina. The system was built entirely by graduate and undergraduate students over the past four years under the direction of Eric Seibel, research assistant professor for mechanical engineering at the Human Interface Technology Laboratory at UW. The team will unveil the latest prototype on May 27, at the Annual Society for Information Display Conference in Seattle, Wash.

Cheap and portable, the prototype consists of a backpack (containing the computer) connected to an image and display system mounted on a pair of glasses. The imaging system contains a ring of 24, infrared, light-emitting diodes and a camera. The diodes fire periodically while the camera collects infrared video input from the user’s field of view.

The students created custom software to compare, in real time, the diode-illuminated scene with the ambient scene. Closer objects reflect more light than do distant objects; if the closer objects remain in view and grow in size, a collision is imminent. The WLVA recognizes the danger and sends a signal to the computer, which determines the location and type of object and triggers the raster display.

The display is a vibrating, crystal fiber-a component made of parts costing less than $1-which connects to a laser diode. The fiber vibrates more than 1,000 times per second, covering its entire scan area 60 times per second. The fiber traces a series of horizontal lines to form a complete, yet translucent, "screen," while the laser fires only at certain points during the trace. Each laser pulse equates to a single pixel, and from the WLVA user’s perspective, the final result is a familiar image.

Working directly with low-vision volunteers, the researchers are developing customized icons that represent common walking hazards. The computer detects different obstacles, such as a branch or trash can, and flashes specific icons onto the back of the eye to warn of danger.

The next-generation WLVA will be much smaller. Ryland Bryant, a recently graduated master’s degree student who is lead author on the Seattle conference paper, has already created a new circuit board that reduces the system weight by about half a pound. As part of these ongoing modifications, the researchers will incorporate a component from a micro-endoscope they are developing: an improved scanner that has higher resolution (over 50 times the original pixel count), yet is 10 times smaller.

Comments from Seibel regarding the research: "Kris Lawrence, a visually-impaired university employee and consultant for this project assisted us with the systems design approach. Kris talks with all of us and gives us guidance about how to improve the WLVA. Sometimes the interaction is eyeopening, like traveling to another country for the first time, giving us exposure to a different way of thinking about things." - Eric Seibel

"People’s eyesight changes and can get worse with time. The next stage is to use laser light to ’tickle,’ or directly stimulate, neurons in the eye and cause them to ’see’ objects even if the photoreceptors are dead. Unfortunately, this far-out futuristic device, a means to mimic the function of diseased rods and cones, is only in the proposal writing stage." - Eric Seibel

"This is another set of eyes looking out for you. Because audio is already the key sense of detection for people with vision disabilities, we chose not to add any audible cues and only augment the user’s impaired visual system with more easily seen laser light." - Eric Seibel


Josh Chamot | NSF
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>