Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Heads-up’ display lives up to its name

28.05.2004


The head-mounted components of the Wearable Low Vision Aid. Shown are the camera with a ring of IR LEDs (left) and the head mounted display (right).
Credit: Human Interface Technology Laboratory at the University of Washington.


Student-designed device helps the visually impaired avoid hazards, day and night

Using a common laptop computer and a sophisticated head-mounted projection device, students at the University of Washington (UW) have created a system to help people with poor vision navigate around stationary objects.

The Wearable Low Vision Aid (WLVA) is the first portable device to draw attention to obstacles using an illuminated, vibrating crystal that projects a warning icon-a raster image much like a television’s-onto the user’s retina. The system was built entirely by graduate and undergraduate students over the past four years under the direction of Eric Seibel, research assistant professor for mechanical engineering at the Human Interface Technology Laboratory at UW. The team will unveil the latest prototype on May 27, at the Annual Society for Information Display Conference in Seattle, Wash.



Cheap and portable, the prototype consists of a backpack (containing the computer) connected to an image and display system mounted on a pair of glasses. The imaging system contains a ring of 24, infrared, light-emitting diodes and a camera. The diodes fire periodically while the camera collects infrared video input from the user’s field of view.

The students created custom software to compare, in real time, the diode-illuminated scene with the ambient scene. Closer objects reflect more light than do distant objects; if the closer objects remain in view and grow in size, a collision is imminent. The WLVA recognizes the danger and sends a signal to the computer, which determines the location and type of object and triggers the raster display.

The display is a vibrating, crystal fiber-a component made of parts costing less than $1-which connects to a laser diode. The fiber vibrates more than 1,000 times per second, covering its entire scan area 60 times per second. The fiber traces a series of horizontal lines to form a complete, yet translucent, "screen," while the laser fires only at certain points during the trace. Each laser pulse equates to a single pixel, and from the WLVA user’s perspective, the final result is a familiar image.

Working directly with low-vision volunteers, the researchers are developing customized icons that represent common walking hazards. The computer detects different obstacles, such as a branch or trash can, and flashes specific icons onto the back of the eye to warn of danger.

The next-generation WLVA will be much smaller. Ryland Bryant, a recently graduated master’s degree student who is lead author on the Seattle conference paper, has already created a new circuit board that reduces the system weight by about half a pound. As part of these ongoing modifications, the researchers will incorporate a component from a micro-endoscope they are developing: an improved scanner that has higher resolution (over 50 times the original pixel count), yet is 10 times smaller.

Comments from Seibel regarding the research: "Kris Lawrence, a visually-impaired university employee and consultant for this project assisted us with the systems design approach. Kris talks with all of us and gives us guidance about how to improve the WLVA. Sometimes the interaction is eyeopening, like traveling to another country for the first time, giving us exposure to a different way of thinking about things." - Eric Seibel

"People’s eyesight changes and can get worse with time. The next stage is to use laser light to ’tickle,’ or directly stimulate, neurons in the eye and cause them to ’see’ objects even if the photoreceptors are dead. Unfortunately, this far-out futuristic device, a means to mimic the function of diseased rods and cones, is only in the proposal writing stage." - Eric Seibel

"This is another set of eyes looking out for you. Because audio is already the key sense of detection for people with vision disabilities, we chose not to add any audible cues and only augment the user’s impaired visual system with more easily seen laser light." - Eric Seibel


###

Josh Chamot | NSF
Further information:
http://www.nsf.gov
http://www.hitl.washington.edu
http://www.hitl.washington.edu/people/eseibel/

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>