Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers to develop intelligent wheelchair

21.05.2004


Computer scientists at the University of Essex have been awarded a grant to develop an intelligent robotic wheelchair.



Researchers from the Department of Computer Science will work alongside scientists from the Institute of Automation at Beijing in developing the advanced technology needed for a high performance, low cost RoboChair which will enable the elderly and disabled to gain increased mobility and live more independently.

The RoboChair will have a user-friendly man-machine interface and the ability of navigation, avoiding collision and planning a path. It will be equipped with a new vision system and a 3G wireless communication system so that its carer or relative can monitor and communicate remotely when necessary.


Professor Huosheng Hu will lead Essex’s Human-Centred Robotics team in developing algorithms for sensor fusion, map-building, intelligent decision-making, and tele-operation through the Internet using 3G mobile phones. Professor Kui Yuan of the Institute of Automation will develop prototype hardware and control software, including servo drivers, DSP-based control systems, sensor systems, and motion control algorithms.

Professor Hu explained why a RoboChair will be beneficial in today’s society: ’Although traditional wheelchairs are widely used by the elderly and disabled they have rather limited functions and flexibility. Support from relatives and carers is often required, but this can be inappropriate as the involvement of relatives is getting more difficult and the cost of running care and health services is very high.

’Today’s technology development in general and pervasive computing technology has reached a stage where we can envisage a solution which allows the elderly and disabled to have necessary mobility to both stay at home and go out independently with the monitoring and services provided from the remote sites.

’We will focus on the development of two levers of complexity. One is a DSP-based control system that is used to achieve good control stability, fast image processing capability and autonomous navigation performance. Another is based on pervasive computing technology that is used to implement an interactive user interface such as voice control, emotion and gesture detection, and wireless communication with relatives and carers remotely.’

The technology developed through this joint project will not only enable users to gain increased mobility and independence, but also enable carers and relatives to monitor and communicate remotely when necessary. Professor Hu continued: ’This is a very challenging project. One of the key challenges is to make the RoboChair cost-effective, easy to use and able to meet the needs of the elderly and disabled and their carers. The ethical and legal issues such as data security, privacy, and complex liability will also be an interesting challenge.’

The research project is being jointly funded by the Royal Society and the Chinese Academy of Sciences.

Kate Cleveland | alfa
Further information:
http://www.essex.ac.uk/news

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>