Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New chip set to revolutionise science and medicine


An engineer at the University of Sheffield is leading a £4.5m project that could revolutionise the way scientists, medics and others see the world – by allowing the earlier detection of cancer, the instant analysis of medical screening tests, and permitting the emergency and security services to work effectively in murky surroundings. It will also open up broad tracts of science to unique high-quality imaging by enabling physicists to understand better the most fundamental interactions of matter, by providing better pictures from space, and probing in unprecedented detail the dynamics inside living cells.

The MI-3 project is focussing on developing and exploiting a new generation of programmable chips that will produce images that can be transformed even before they leave the camera. Active Pixel Sensors exploit the capabilities of Complimentary Metal Oxide Semi-Conductor (CMOS) Chips by allowing intelligent imaging that can focus right down to individual pixels. This project will also allow experts to view non-visible light, such as high-energy particles and x-rays and beyond to the ultra-violet spectrum and into the infra-red. The MI-3 project is part of the UK Research Councils Basic Technology Initiative and is a multi-disciplinary research group.

Professor Nigel Allinson from the University of Sheffield is leading this study. He explains, “The imaging technology in products like digital cameras and camcorders are called Charged Coupled Devices (CCD). They are great for what they do, but they are expensive and slow. Disposal applications, such as medical screening, need inexpensive technology. Also with CCDs you can only control the quality of an image by varying the exposure time and the aperture - much as you do with a normal film camera. With APS devices, the device itself can control read-out and each individual part of the image is treated. For example, you can choose to look only at a specific part of an image in detail, rather than exposing the whole picture and then trying to zoom in to an interesting region.

“The potential practical applications for this research are huge”, explains Professor Allinson. “Our research teams are working on several applications, including developing a new method for imaging mammograms, which reduces the X-ray dose needed to produce a good image. The transistors in the CMOS chips can be programmed to ensure that the patient is exposed to the smallest possible dose.

“This particular application could be in use in as little as two years. In four to five years we may be able to use APS chips to provide bedside diagnostic tools that will detect cancer at the earliest possible stages, being easier and faster than current body scanners.

“APS cameras are able to cope with images that have high contrast and this is important for scenes taken in adverse conditions. We already have unique technology for seeing through fog and smoke – of course, this not only benefits firemen and search and rescue teams but many areas of security.

”These are just some of the applications for this technology and we are excited to be involved in the development of such an exciting new range of devices.”

Lorna Branton | alfa
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>