Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Busy sequencing technique saves money and time

11.05.2004


Two at a time


Computer scientist Michael Brent has developed innovative sequencing techniques that will aid in the sequencing of mammals, such as the recently sequenced laboratory rat above, in the future



A computer scientist at Washington University in St. Louis has developed a novel technique to extract more DNA from a single sequence reaction than is normally possible, reducing both cost and time of the sequencing process.

Michael R. Brent, Ph.D., associate professor of computer science, has applied software developed in his Washington University laboratory that sorts through the maze of genetic information and finds predicted sequences.


"Normally, you get one 600 to 700 base pair sequence in a reaction, but under certain conditions, we’ve figured out how to get more than one sequence out of a single sequencing reaction," said Brent. "In most cases, people would throw out a reaction with more than one sequence but we’ve developed software that allows us to sort out the mess and figure out the different sequences."

Writing in the April issue of Genome Research, Brent and collaborators at Baylor College of Medicine, led by Richard A. Gibbs, Ph.D., director of Baylor’s Human Genome Sequencing Center, discuss related techniques in genome analysis, while noting that the recent publication of a third mammalian genome, the brown rat, suggests a new approach to genome annotation is needed. Sequencing genomes has proven to be so labor-intensive and expensive that researchers fear little headway will be made in future genome analyses. Thus, the need for automated analysis.

The researchers describe their method of predicting genes in the brown rat using Brent’s TWINSCAN software, which predicts the existence of genes by looking at two genomes in parallel and homing in on statistical patterns in the individual DNA sequences of each genome. The recently completed sequencing of the brown rat genome was conducted primarily using another program called Ensembl. Brent and his collaborators tested 444 TWINSCAN-predicted rat genes that showed significant homology, or correspondence, to known human genes implicated in disease. Ensembl and other techniques that use protein-to-genome mapping missed these genes.

Brent and his collaborators verified the existence of 59 percent of their predicted genes.

"We showed that we can do this efficiently with a reasonable fraction of the genes that TWINSCAN predicts and that you can actually produce a gene structure with the method," Brent said. "These predictions are a viable springboard for doing experiments. When you start with a prediction you’ll get an experimental result pretty frequently. We believe it’s a good way to complete the annotation of a genome."

The approach stands traditional genome annotation on its head because it starts with a computer analysis of genome data, using that as a hypothesis and drawing experiments from the hypothesis.

"Currently, experimental sequencing of both genomes and gene products is followed by computational analysis of the resulting sequences," said Brent. "It’s a one way street. We want to integrate computational and experimental genomics, so that the parts of the process talk to each other."

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/news/page/normal/849.html

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>