Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Busy sequencing technique saves money and time

11.05.2004


Two at a time


Computer scientist Michael Brent has developed innovative sequencing techniques that will aid in the sequencing of mammals, such as the recently sequenced laboratory rat above, in the future



A computer scientist at Washington University in St. Louis has developed a novel technique to extract more DNA from a single sequence reaction than is normally possible, reducing both cost and time of the sequencing process.

Michael R. Brent, Ph.D., associate professor of computer science, has applied software developed in his Washington University laboratory that sorts through the maze of genetic information and finds predicted sequences.


"Normally, you get one 600 to 700 base pair sequence in a reaction, but under certain conditions, we’ve figured out how to get more than one sequence out of a single sequencing reaction," said Brent. "In most cases, people would throw out a reaction with more than one sequence but we’ve developed software that allows us to sort out the mess and figure out the different sequences."

Writing in the April issue of Genome Research, Brent and collaborators at Baylor College of Medicine, led by Richard A. Gibbs, Ph.D., director of Baylor’s Human Genome Sequencing Center, discuss related techniques in genome analysis, while noting that the recent publication of a third mammalian genome, the brown rat, suggests a new approach to genome annotation is needed. Sequencing genomes has proven to be so labor-intensive and expensive that researchers fear little headway will be made in future genome analyses. Thus, the need for automated analysis.

The researchers describe their method of predicting genes in the brown rat using Brent’s TWINSCAN software, which predicts the existence of genes by looking at two genomes in parallel and homing in on statistical patterns in the individual DNA sequences of each genome. The recently completed sequencing of the brown rat genome was conducted primarily using another program called Ensembl. Brent and his collaborators tested 444 TWINSCAN-predicted rat genes that showed significant homology, or correspondence, to known human genes implicated in disease. Ensembl and other techniques that use protein-to-genome mapping missed these genes.

Brent and his collaborators verified the existence of 59 percent of their predicted genes.

"We showed that we can do this efficiently with a reasonable fraction of the genes that TWINSCAN predicts and that you can actually produce a gene structure with the method," Brent said. "These predictions are a viable springboard for doing experiments. When you start with a prediction you’ll get an experimental result pretty frequently. We believe it’s a good way to complete the annotation of a genome."

The approach stands traditional genome annotation on its head because it starts with a computer analysis of genome data, using that as a hypothesis and drawing experiments from the hypothesis.

"Currently, experimental sequencing of both genomes and gene products is followed by computational analysis of the resulting sequences," said Brent. "It’s a one way street. We want to integrate computational and experimental genomics, so that the parts of the process talk to each other."

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/news/page/normal/849.html

More articles from Information Technology:

nachricht Football through the eyes of a computer
14.06.2018 | Universität Konstanz

nachricht People recall information better through virtual reality, says new UMD study
14.06.2018 | University of Maryland

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>