Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Academics’ detective work to speed up crime scene investigation

27.04.2004


Kingston University is heading a major investigation that could help police officers solve crime more quickly. Experts from Kingston’s Digital Imaging Research Centre have joined forces with Surrey University and independent research organisation Sira for a project called REVEAL (Recovering Evidence from Video by Fusing Video Evidence Thesaurus and Video Meta-Data). The partners have been jointly awarded £390,000 from the Engineering and Physical Sciences Research Programme (EPSRC) to find ways to cut the time it takes officers to examine CCTV footage of a crime scene.



Kingston University has received £209,000 for its role in the venture, which is geared to meet the requirements of the Police Information Technology Organisation and Police Scientific Development Branch. During the next three years, the project team hopes to develop a system that will automatically extract and record evidence from CCTV footage. CCTV played a central role in identifying individuals and vehicles involved, Director of Kingston’s Digital Imaging Research Centre Dr Graeme Jones said.

With input from imaging specialists Sira, Dr Jones and his Kingston University colleague Professor Tim Ellis hope to produce a surveillance system that will automatically generate a gallery of suspects’ pictures and vehicle number plates for all moving objects in the footage. The technology would find the clearest image of a person or vehicle and track their movement, even predicting their position when out of the camera’s range. “It will be used by police forces to automatically generate a list of suspects so officers can decide whether they have anything to do with a crime,” Dr Jones explained. “For example, in the case of a car break-in, there might be a description of a suspect wearing red trousers and an approximate time the incident took place. By inputting these details into a computer, officers will be able to pull off a report of all cameras which have recorded this.”


Dr Jones said the project was designed to meet the Home Office’s five-year strategic framework to ensure the police service was equipped to exploit opportunities to science and technology to deliver effective law enforcement. “Gathering this evidence can involve committing many officers to the extremely time-consuming process of manually recording what is happening in available CCTV archives. It can currently take up to four hours to mark up one hour of footage. Therefore, any technology for recovering intelligence automatically from video footage is a priority for development of the police’s evidence-gathering capabilities. Such advanced technology will free up officers, allowing investigation teams to be more effective at solving crimes,” he said.

Surrey University’s Centre for Knowledge Management is producing a Visual Evidence Thesaurus which will be integrated into Kingston University’s surveillance model. The centre will take video surveillance documents and, together with interview transcripts of experts commenting on CCTV tapes, use this to build a model of related terminology. The partners expect that all this evidence will be capable of entry into HOLMES 2, the investigation management system used by police forces to collect, manage and analyse intelligence data.

Phil Smith | alfa
Further information:
http://www.kingston.ac.uk

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>