Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Applying Grid middleware to industry

21.04.2004


Specialised design problems can require massive computing efforts. Middleware tools to harness the power of Grid computing have been proven to work in real industrial applications, through the work of IST project DAMIEN.



Helping to design aircraft

EADS, a major aerospace company and DAMIEN consortium member, used the system in real applications across its sites in Europe. "Before you can get official certification for a new design of aircraft, extensive tests have to be carried out," says Professor Michael Resch of HLRS (High Performance Computing Centre) at Universitaet Stuttgart, and DAMIEN coordinator.


By way of analogy, he said if an aircraft’s wing fluttered like a flag in the wind, it could lead to structural failure. "The design of the wing can be optimised through simulation, but requires massive computing effort. You use computational fluid dynamics to model the air flow around the wing, and you analyse the structural mechanics of the wing to see where it is stressed. The shape of the wing changes as a result of these stresses and, as if this wasn’t already complicated enough, you then have to revise the computed airflow to take account of this change in shape, and so it goes on."

"Different EADS sites carry out particular parts of the development process," continues Resch. "So one site might have expertise and resources for computational fluid dynamics, and another for structural mechanics. The DAMIEN tests involved the EADS sites at Paris and Toulouse. Each site would work on their part of the simulation for a few minutes and then exchange data with the other site using the multi-gigabit research network, GÉANT. You can think of the DAMIEN toolset as giving development engineers access to a virtual supercomputer."

The simulation of acoustical properties is another area that requires massive computing effort, and where DAMIEN finds application. EADS, for example, has employed it in a multi-physics application for vibro-acoustic simulation that has been used, in conjunction with DAMIEN, to simulate noise-reduction measures within aircraft cabins, etc.

Success at ISC 2003

The DAMIEN toolset was demonstrated at the International Supercomputing Conference (ISC) 2003. The demonstration was a computation- and communication-intensive application in the area of bio-informatics called RNAfold. The computational Grid for this demonstration consisted of 22 high-performance computers at different sites around the world.

HLRS participated in the HPC (High Performance Computing) Challenge, and was awarded first place in the category ’Most Geographically Distributed Applications’. The application used was fastDNAml, which is a parallel programme for studying evolutionary relationships, and which used PACX-MPI (a DAMIEN development).

What makes DAMIEN different?

"Most Grid projects tend to be aimed at new applications, such as searching across databases or Web crawling, etc., in which computer performance is less relevant than data handling," explains Resch. "DAMIEN had a different emphasis, and was about using distributed resources for classical simulations that require large computational effort."

"What we did was to extend the capability of commonly-used simulation tools from the non-distributed environment to the Grid environment," says Resch. "In order to do this, we had to develop middleware tools, which can be thought of as the ’glue’ between a computer’s operating system and application programmes. We took well-known and accepted tools, such as MPI [Message Passing Interface], which is often deployed in high performance computing systems, and adapted them."

"Specifically, the extensions fall within three areas," adds Resch. "First, we had to integrate an additional communication layer that reflected the characteristics of distributed environments. Then we had to adapt the tools to take on board Quality of Service (QoS) handling, which is a network concept that enables flexible network resource management. Finally, we had to improve the usability of these distributed tools and the various distributed environments."

So where does DAMIEN stand now? "Three of the components in the DAMIEN toolset were extended and are commercially available," concludes Resch. "DAMIEN is a very powerful tool, but the market for it is very small. We decided that it was better to make the fourth tool available under an Open Source agreement, where it will benefit from, and give benefit to, the research community."

Contact:
Michael Resch
High Performance Computing Centre
Universitaet Stuttgart
Germany
Tel: +49-711-6855834
Fax: +49-711-6787626
Email: resch@hlrs.de
Source: Based on information from DAMIEN

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&ID=64757

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>