Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Applying Grid middleware to industry

21.04.2004


Specialised design problems can require massive computing efforts. Middleware tools to harness the power of Grid computing have been proven to work in real industrial applications, through the work of IST project DAMIEN.



Helping to design aircraft

EADS, a major aerospace company and DAMIEN consortium member, used the system in real applications across its sites in Europe. "Before you can get official certification for a new design of aircraft, extensive tests have to be carried out," says Professor Michael Resch of HLRS (High Performance Computing Centre) at Universitaet Stuttgart, and DAMIEN coordinator.


By way of analogy, he said if an aircraft’s wing fluttered like a flag in the wind, it could lead to structural failure. "The design of the wing can be optimised through simulation, but requires massive computing effort. You use computational fluid dynamics to model the air flow around the wing, and you analyse the structural mechanics of the wing to see where it is stressed. The shape of the wing changes as a result of these stresses and, as if this wasn’t already complicated enough, you then have to revise the computed airflow to take account of this change in shape, and so it goes on."

"Different EADS sites carry out particular parts of the development process," continues Resch. "So one site might have expertise and resources for computational fluid dynamics, and another for structural mechanics. The DAMIEN tests involved the EADS sites at Paris and Toulouse. Each site would work on their part of the simulation for a few minutes and then exchange data with the other site using the multi-gigabit research network, GÉANT. You can think of the DAMIEN toolset as giving development engineers access to a virtual supercomputer."

The simulation of acoustical properties is another area that requires massive computing effort, and where DAMIEN finds application. EADS, for example, has employed it in a multi-physics application for vibro-acoustic simulation that has been used, in conjunction with DAMIEN, to simulate noise-reduction measures within aircraft cabins, etc.

Success at ISC 2003

The DAMIEN toolset was demonstrated at the International Supercomputing Conference (ISC) 2003. The demonstration was a computation- and communication-intensive application in the area of bio-informatics called RNAfold. The computational Grid for this demonstration consisted of 22 high-performance computers at different sites around the world.

HLRS participated in the HPC (High Performance Computing) Challenge, and was awarded first place in the category ’Most Geographically Distributed Applications’. The application used was fastDNAml, which is a parallel programme for studying evolutionary relationships, and which used PACX-MPI (a DAMIEN development).

What makes DAMIEN different?

"Most Grid projects tend to be aimed at new applications, such as searching across databases or Web crawling, etc., in which computer performance is less relevant than data handling," explains Resch. "DAMIEN had a different emphasis, and was about using distributed resources for classical simulations that require large computational effort."

"What we did was to extend the capability of commonly-used simulation tools from the non-distributed environment to the Grid environment," says Resch. "In order to do this, we had to develop middleware tools, which can be thought of as the ’glue’ between a computer’s operating system and application programmes. We took well-known and accepted tools, such as MPI [Message Passing Interface], which is often deployed in high performance computing systems, and adapted them."

"Specifically, the extensions fall within three areas," adds Resch. "First, we had to integrate an additional communication layer that reflected the characteristics of distributed environments. Then we had to adapt the tools to take on board Quality of Service (QoS) handling, which is a network concept that enables flexible network resource management. Finally, we had to improve the usability of these distributed tools and the various distributed environments."

So where does DAMIEN stand now? "Three of the components in the DAMIEN toolset were extended and are commercially available," concludes Resch. "DAMIEN is a very powerful tool, but the market for it is very small. We decided that it was better to make the fourth tool available under an Open Source agreement, where it will benefit from, and give benefit to, the research community."

Contact:
Michael Resch
High Performance Computing Centre
Universitaet Stuttgart
Germany
Tel: +49-711-6855834
Fax: +49-711-6787626
Email: resch@hlrs.de
Source: Based on information from DAMIEN

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&ID=64757

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>