Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Here there be data: Mapping the landscape of science

07.04.2004


In ancient maps of the world, expanses of unknown territory might hold a warning to would-be explorers: Here there be monsters. For today’s explorers seeking to navigate and understand the world of science, the monsters are the untamed collections of data that inhabit a largely uncharted landscape.

The April 6, 2004, issue of the Proceedings of the National Academy of Sciences (PNAS) features nearly 20 articles by some of tomorrow’s mapmakers. Representing the computer, information and cognitive sciences, mathematics, geography, psychology and other fields, these researchers present attempts to create maps of science from the ever-growing and constantly evolving ocean of digital data.

"Science is specializing at high speed, which leads to increasing fragmentation and reinvention," said Katy Börner of Indiana University. "Maps of publication databases or other data sources can help show how scientists and scientific results are interconnected."



College students might use such maps to see how well a syllabus covers a field’s major topics, while companies could map out plans for targeting their investments. Funding agencies could keep an eye on research frontiers or forecast how funding decisions might affect a discipline. An online version could provide an effective interface to major databases.

"Ultimately, I’d like to see a map of science in schools, as common as the political world map," Börner said. "’Continents’ would represent the diverse areas of science, and closely related areas would reside on the same continent. Teachers might say, ’Let’s look at the new research frontier in sector F5.’ Students could say, ’My mom works over there.’"

The results featured in PNAS were originally presented at the May 2003 Arthur M. Sackler Colloquium on Mapping Knowledge Domains, sponsored by the National Academy of Sciences. Organized by Richard Shiffrin and Börner of Indiana University, the colloquium addressed the task of extracting meaningful and relevant information from largely unorganized data collections. "Today, almost all of us access knowledge in ways vastly different from those used for hundreds of years," Shiffrin said. "The traditional method involved books, reference works and physical materials on library shelves, most of which had been verified for accuracy by one or another authority. Now, we sit at computers and cast our net into a sea of information, much of which is inaccurate or misleading."

Authors of 12 of the articles are supported by awards from the National Science Foundation (NSF), the independent federal agency that supports fundamental research and education across all fields of science and engineering.

Several of the papers describe ways to analyze article collections and map out landscapes that humans can view. Some methods, such as that proposed by Simon Dennis, "read" scientific articles and use a deep understanding of the content as the basis for a map. Other methods use relationship networks between the articles, such as citation of other papers, as the basis for a map.

"Process" models aim to better understand how the structure of scientific networks evolves over time. Filippo Menczer demonstrates that some combination of content and Web links or citation relationships needs to be considered, while Börner, Jeegar Maru and Robert Goldstone consider topics, newness, and linking to show how several such networks might evolve together.

Scientific landscapes might have hundreds of possible dimensions, presenting a challenge in creating two- or three dimensional maps, according to Thomas Landauer and colleagues. Elena Erosheva and colleagues show that computerderived mappings may not correspond to human-assigned categories and that more articles can be considered interdisciplinary than officially indicated by PNAS dual classifications.

Mapping methods must also identify the data-collection analogs of landmarks and borders. For example, Thomas Griffiths and Mark Steyvers found the "hot topics" that cropped up in a 10-year collection of PNAS articles. Similarly, Jonathan Aizen and colleagues describe how spikes in an item’s Web popularity might be useful as timesensitive landmarks.

The borders on these maps mark divisions between related scientific topical areas, groups of collaborators or other clusters that emerge from the data at hand. For example, Paul Ginsparg and colleagues used their method to map the boundaries of an emerging biology-inspired research community within physics.

In his paper, Mark Newman showed that clusters in social networks can also be used to map scientific communities. A scientist may or may not be six degrees from Kevin Bacon, but Newman showed that scientists were about six coauthors away from any other scientist.

However, these borders, like the world’s political boundaries, change over time. John Hopcroft and colleagues devised a method that mapped, across a landscape of 1.8 million computer science articles, the scientific communities that evolved over the course of a decade.

Finally, in a digital landscape with hundreds of possible options for north or south, east or west, drawing a map with which human explorers can navigate from point A to point B presents another set of challenges. Ketan Mane and Börner describe techniques to draw maps that highlight landmarks such as major research topics or trends. Alan MacEachren and colleagues show how techniques from geographic mapmaking might be applied to science landscapes.

"Creating a map for all of science will require large-scale cyberinfrastructure," Börner said. "The endeavor will involve terabytes of data-publications, patents, grants and other databases-scalable software and large amounts of number-crunching power. Such computational effort is common in physics or biology but not in the social sciences. However, maps of science will benefit every field."

The research in the following papers in the April 6 issue of PNAS was supported in whole or in part by awards from the National Science Foundation.
  • Jonathan Aizen, Daniel Huttenlocher, Jon Kleinberg, and Antal Novak. "Traffic-based feedback on the web."
  • Katy Börner, Jeegar T. Maru, and Robert L. Goldstone. "The simultaneous evolution of author and paper networks." · Simon Dennis. "An unsupervised method for the extraction of propositional information from text."
  • Elena Erosheva, Stephen Fienberg, and John Lafferty. "Mixed-membership models of scientific publications."
  • Paul Ginsparg, Paul Houle, Thorsten Joachims, and Jae- Hoon Sul. "Mapping subsets of scholarly information."
  • Thomas L. Griffiths and Mark Steyvers. "Finding scientific topics."
  • John Hopcroft, Omar Khan, Brian Kulis, and Bart Selman. "Tracking evolving communities in large linked networks."
  • Thomas K. Landauer, Darrel Laham, and Marcia Derr. "From paragraph to graph: Latent Semantic Analysis for information visualization."
  • Ketan K. Mane and Katy Börner. "Mapping topics and topic bursts in PNAS."
  • Alan MacEachren, Mark Gahegan and William Pike. "Visualization for constructing and sharing geo-scientific concepts."
  • Fillipo Menczer. "Evolution of document networks."
  • M.E.J. Newman. "Coauthorship networks and patterns of scientific collaboration."

David Hart | NSF
Further information:
http://www.nsf.gov/od/lpa/news/media/start.htm
http://www.nsf.gov/od/lpa/newsroom/pr_all_img.cfm?ni=69

More articles from Information Technology:

nachricht Smarter robot vacuum cleaners for automated office cleaning
15.08.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Researchers 3-D print first truly microfluidic 'lab on a chipl devices
15.08.2017 | Brigham Young University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>