Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Software Developed at Rensselaer Predicts Promising Ingredients for New Drugs

05.04.2004


The DDASSL software can quickly screen large databases, accurately predicting the molecules that show potential for future medicines.


Program speeds drug discovery

Researchers at Rensselaer Polytechnic Institute today announced the release of a software program capable of quickly identifying molecules that show promise for future medicines. The software program enables drug makers to comb through enormous databases of potential molecules and identify the ones that have sound medicinal properties.

Rensselaer researchers with skills in computer science, chemistry, and math allied to create the software program. Chemistry Professor Curt Breneman, Mathematics Associate Professor Kristin Bennett, and Decision Sciences and Engineering Systems Associate Professor Mark Embrechts collaborated in the Drug Discovery and Semi-Supervised Learning project (DDASSL, pronounced “dazzle”), supported by a $1.2 million Knowledge and Distributed Intelligence Award from the National Science Foundation.



“The trick with drug discovery is to have the drug molecule fit like a key in a lock, because shape affects its performance,” Embrechts said. The safety and effectiveness of medicines depend on the shape and chemistry of the molecule. To find the most likely molecules, the new software makes use of two shortcuts in chemistry and math that enable the computer to search a vast molecular database rapidly.

The first shortcut describes the molecule, its shape and chemistry, in terms of numbers a computer can crunch rapidly. “Dr. Breneman has a technique to calculate electronic properties on the surface of a molecule very quickly,” Embrechts said. “It produces a description—basically a set of numbers—that the computer can use easily.”

Then, the second shortcut identifies which molecules have the right chemistry for a specific therapy. Using advanced pattern-recognition techniques known as kernel methods, the software analyzes a small sample database to identify molecules with the right chemical features. Once the key features are identified, the software can quickly screen large databases, accurately predicting the molecules that show potential.

“Conventional techniques are not truly predictive and don’t work,” Bennett said. “So we borrowed pattern recognition techniques already used in the pharmaceutical industry and added algorithms based on support vector machines. That gives us a technique to predict which molecules are promising.”

Rensselaer researchers noted that predictive modeling is one of a new breed of drug discovery methods that marks a shift in industry practice—a shift away from cell-based assays performed in the lab toward math-based models calculated on the computer.

“Our program allows researchers to ‘crash test’ lots of molecules quickly and inexpensively,” Breneman said. “That prevents a lot of false starts. The ultimate pay-off of this methodology may be that it can support the rapid invention of new drugs when diseases develop quickly and threaten society.”

As drug makers increasingly target complex, chronic illness, drug development becomes far more costly and time consuming. Meanwhile, in the search for new drugs, 99.9 percent of compounds tested ultimately fail. Accordingly, drug makers want to be able to predict more accurately which compounds will produce the next blockbuster drug.

The Rensselaer research team will continue work to improve drug discovery methods, which will be carried out in the new Rensselaer Center for Biotechnology and Interdisciplinary Studies, a state-of-the-art facility scheduled to open in September 2004.

About Rensselaer

Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Robert Pini | Rensselaer News
Further information:
http://www.rpi.edu/web/News/press_releases/2004/ddassl.htm

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>