Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Testbed To Reality: Grid Computing Steps up a Gear

02.04.2004


UK plans for Grid computing changed gear this week. The pioneering European DataGrid (EDG) project came to a successful conclusion at the end of March, and on 1 April a new project, known as Enabling Grids for E-Science in Europe (EGEE), begins. The UK is a major player in both projects, providing key staff and developing crucial areas of the technology. While EDG tested the concept of large-scale Grid computing, EGEE aims to create a permanent, reliable Grid infrastructure across Europe.



Grid computing pulls together the processing power and data storage of thousands of computers, spread over hundreds of locations. Professor Steve Lloyd, Chair of the UK Particle Physics Grid, explains that, "Individual scientists using the Grid won’t need to know where the data is held or which machines are running their programmes. So whereas a PC on the web provides information or access to services, such as banking or shopping, a PC on the Grid offers its computing power and storage."

The European DataGrid (EDG) project started three years ago, with the UK Particle Physics and Astronomy Research Council (PPARC) providing £2.1m funding, as one of six main partners. EDG took a major step towards making the concept of a world-wide computing Grid a reality, building a test computing infrastructure capable of providing shared data and computing resources across the European scientific community. At peak performance, there were more than 1,000 computers on the EDG test bed, sharing more than 15 Terabytes (15 million million bytes) of data at 25 sites across Europe, Russia and Taiwan. Grid resources were provided to over 500 scientists.


After a massive software development effort involving seven major software releases over three years, the final version of EDG software is already in use in three major scientific fields: Particle Physics, Biomedical applications and Earth Observations. The software is exploited by ten bio-medical applications and five earth observation institutes.

In Particle Physics, Grid computing will help scientists deal with a data deluge from CERN’s new particle accelerator, the Large Hadron Collider (LHC), due to go online in 2007. LHC will produce millions of billions of bytes of real and simulated data. GridPP, the UK’s Particle Physics Grid, has been working with EDG over the last three years. GridPP resources contributed a large part to the EDG testbed, with processors at 16 UK sites and around 100,000 computing jobs submitted through UK computers.

GridPP also helped to develop much of the important ’middleware’ for EDG. This allows the software being used by the scientists to talk to the Grid’s hardware, distributing computing tasks efficiently around the network and dealing with issues such as security, ensuring that only authorised users can access the Grid. GridPP members will also be heavily involved in the next stage of European Grid computing, EGEE.

The EGEE project will build on the success of EDG and take Grid technology even further by establishing a Grid infrastructure available across Europe, 24 hours-a-day. Fabrizio Gagliardi, former DataGrid Project Leader and Project Director of EGEE, said: "Whereas EDG provided European scientists with the first convincing large-scale demonstrations of a functioning Data Grid, EGEE will make the technology available on a regular and reliable basis to all of European science, as well as industrial Research and Development. Like the World Wide Web, which was initially conceived at CERN for rather specialised scientific purposes, the impact of this emerging Grid technology on European society is difficult to predict in detail at this stage, but it is likely to be huge."

EGEE will capitalise on the experience and achievements of EDG and many other EU, national and international Grid projects. It will primarily concentrate on three core areas:

- to build a consistent, robust and secure grid network.

- to continuously improve and maintain the middleware in order to deliver a reliable service to users.

- to attract new users from industry as well as science and ensure they receive the high standard of training and support they need.

EGEE consists of 70 partner institutions covering a wide-range of both scientific and industrial applications. Two pilot areas have been selected - the Large Hadron Collider Computing Grid; and Biomedical Grids, where several communities are facing equally daunting challenges to cope with the flood of bioinformatics and healthcare data.

Four UK organisations are partners in EGEE - PPARC, the Council for the Central Laboratory of the Research Councils (CCLRC), the National e-Science Centre in Edinburgh and University College London (UCL). In addition, there are five UK contributing organisations, which are part of the UK and Ireland Federation set up to extend deployment of this European-wide Grid: University of Glasgow, Imperial College London, University of Leeds (on behalf of the White Rose Consortium), University of Manchester, and University of Oxford.

The Grid will be built on the EU Research Network GEANT, as well as national infrastructure such as the UK’s SuperJANET academic network. UCL, through its e-Science Network Centre of Excellence, has primary responsibility for developing and deploying new EGEE network services, such as monitoring the networks and allocating space on them. Through this, the UK will play a major role in developing the critical relationship between EGEE and GEANT.

CCLRC (at the Rutherford Appleton Laboratory) will lead a partnership of a number of UK institutes in delivering production quality Grid services as part of EGEE and will provide core infrastructure services to the EGEE Grid. A programme focussed on producing high quality Grid information and monitoring services will also be developed.

This builds on the substantial experience built up over the last 3 years through participation in the EDG project and in running pilot Grid services.

The EGEE training programme, to be led by the UK National e-Science Centre (NeSC), will involve the active participation of 22 of the 70 EGEE partner organisations. During the next two years it will run training events and workshops all over Europe, as well as delivering customised training events within Grid computing conferences. The end-product of this work will be a series of tried and tested high-quality training modules, available for general use via the Web.

EGEE is a two-year project conceived as part of a four-year programme, where the results of the first two years will provide the basis for assessing subsequent objectives and funding needs.

Julia Maddock | PPARC
Further information:
http://www.pparc.ac.uk/Nw/egee_launch.asp

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>