Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards quicker high level chip design

23.03.2004


Competitiveness in the chip design and fabrication sector depends on fast turn-arounds and ever shorter concept-to-product cycles. New hardware design tools based on object-oriented methods should help shorten the design cycle.



The design gap

The complexity of recently available products, such as new 3G mobile phones, camera and PDA combos, is staggering and requires a huge design effort. "There is no doubt that electronic systems of the future are going to be very complex," says Frank Oppenheimer of the OFFIS Research Institute, Oldenburg, and coordinator of the IST project ODETTE. "The complexity has been on the increase for a decade or so and we expect the trend to continue for the next 10-15 years."


Chip fabrication technology is improving all the time leading to ever smaller components. This means that chips can be designed to handle greater complexity or, for the same level of complexity, require smaller chip areas and lower power consumption. This opens up many new opportunities.

"The problem is that the design methodologies are, from a technical standpoint, at least ten years old," comments Oppenheimer. "There is a gap - we call it the design gap - between the methodologies and the technologies available. The tragedy is that these new opportunities cannot be fully exploited with current design methodologies.

"Suppose that, ten years ago, it took a year to design a system. Today, the requirement might be for a system with five times the complexity; using the same methodology, it would take five years to develop. No-one in industry would even consider such a long design cycle," adds Oppenheimer.

Handling complexity

"When chips were first designed, decades ago, it was carried out at the level of individual transistors and gates," says Oppenheimer. "Over the years, improvements in design methodology enabled designers to work at a much higher level, for example in terms of the registers and adders found within a microprocessor. This is the RT (Register Transfer) level. These are the basic building blocks within the micro-architecture of application-specific hardware devices (ASICs)."

"Nevertheless, despite this level of complexity, the designer would still be thinking at quite a low level, for instance in terms of basic integer arithmetic or wiring individual components together on the chip. ODETTE enables hardware designers to think in terms of much more abstract data types, perform complex operations with them and provide the means for high-level communication modelling," says Oppenheimer.

"We have tried to learn from the software domain, which is an area that is more advanced in the handling of complexity," observes Oppenheimer. "The object-oriented approach has a good track record, and concepts such as Classes and Inheritance are used in the ODETTE methodology. For example, whereas conventional chip design uses the concept of integer arithmetic, the ODETTE methodology would be quite at home working with TCP/IP packets. All the designer would have to do is to model the packet as a Class. We’ve significantly raised the level of abstraction of hardware designs and a spin-off will be to raise the level of productivity."

Putting theory into practice

There were two dimensions to the ODETTE project. One was to carry out research into the use of object-oriented methods as a means of generating hardware designs. The other was to develop a translator that takes an object-oriented hardware specification and translates it, using hardware synthesis, into something that can be inserted into an industrial design flow for real silicon.

Hardware synthesis based on object-oriented specifications called for the development of new synthesis techniques and tools. This lead to the definition of an extended SystemC/C++ synthesis subset, and a prototype synthesis tool capable of processing it. ODETTE presented a whole new design environment, and many other topics had to be addressed. First class libraries, for example, had to be created to support the hardware synthesis and verification techniques had to be developed, and these greatly benefited from the higher level of abstraction inherent in object-oriented methods.

"The fabrication process involves a number of steps," says Oppenheimer. "You make a software-like description of the hardware using a language such as VHDL or Verilog. You then use a synthesis tool, which employs a chain of tools to eventually produce something that can be processed on a silicon wafer. The ODETTE implementation can be thought of, in effect, as another element in the chain of tools, which sits on top of all the other tools. Only with tools such as ODETTE will tomorrow’s designers be able to create high-functionality chips with several hundred million transistors."

"The research work of ODETTE continues in related fields at OFFIS," says Oppenheimer. "As for the future, we hope the synthesis tool will become commercialised. Part of the methodology, in particular the Language Reference Manual and the simulation library of OSSS, can be downloaded free of charge."

Contact:
Frank Oppenheimer
Manager System Design Methodology Group
OFFIS - R&D Division Embedded Hardware-/Software-Systems
Escherweg 2
D- 26121 Oldenburg
Germany
Tel: +49-441-9722285
Fax: +49-441-9722282
Email: Frank.Oppenheimer@offis.de
Source: Based on information from ODETTE

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=63144

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>