Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon chips with ultra-cold atoms – the future of computing

23.03.2004


Institute of Physics Condensed Matter and Materials Physics Conference


University of Warwick, 4-7 April, 2004


Developments in snap-shot MRI (magnetic resonance imaging), organic semiconductor technology, high temperature superconductivity, and progress towards quantum computers are some of the topics being presented at a major conference organised by the Institute of Physics next month. The four-day conference, CMMP 2004, will take place from Sunday 4th to Wednesday 7th April 2004 at the University of Warwick.

Silicon microchips touch our lives in many ways – they power personal computers and enable high-speed medical imaging. Inside silicon chips, electrons move along microscopic wires that form complex electrical circuits. At this conference, on Tuesday 6th April, Professor Jakob Reichel from the University of Munich will describe a revolutionary new type of microchip in which entire atoms, rather than just electrons, move around circuits. In these “atom chips”, thousands of atoms hover in a cloud above the surface of the chip, and move along air wires produced by tiny magnetic fields – like microscopic magnetic levitation trains floating above a track.



The atom clouds themselves are very special – they are so cold that all of the atoms merge into one “superatom”, known as a Bose-Einstein Condensate, which behaves like a wave and exhibits bizarre quantum behaviour. Bose-Einstein Condensates have just entered the Guinness Book of Records as the coldest ever place – within a few billionths of a degree of the lowest possible temperature, absolute zero. Using atom chips to move and manipulate Bose-Einstein Condensates could enable the development of “quantum computers”, which would exploit unique features of quantum mechanics, and, for certain tasks, be vastly more powerful than the conventional electronic computers available today.

There will be twenty-two symposia within the conference including ’Nanomagnetism and Spintronics’, ’Quantum Fluids and Solids’, ’Semiconductor Optics and Photonics’, ‘Applied Superconductivity’ and ’Bose-Einstein Condensates’. In addition to the presentations in each symposium, there will be a series of plenary lectures by world-renowned researchers. These include ‘Snap Shot MRI’ by Nobel prize-winner Sir Peter Mansfield, ‘Carbon Nanotube Electronics and Optoelectronics’ by P Avouris of IBM USA, ’Single Photon Devices for Quantum Cryptography’ by A Shields of Toshiba UK, ’Dynamic Phenomena in Magnets: Investigations over Five Orders of Magnitude’ by RL Stamps of the University of Western Australia and ’Liquids, Solids and Elastic Heresy in Between - is there a 2 1⁄2th State of Matter?’ by M Warner of the University of Cambridge, UK.

David Reid | alfa
Further information:
http://physics.iop.org/IOP/Confs/CMMP04/

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>