Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prototype system developed by Wright State computer engineer allows blind to “see”

19.03.2004


Researchers at Wright State University have developed a prototype device to help blind individuals “see.”



Nikolaos Bourbakis, Ph.D., Ohio Board of Regents Distinguished Professor of Information Technology at Wright State’s College of Engineering and Computer Science is the principal investigator. The project is a cooperative venture with Arizona State University (ASU).

“Our object is to develop intelligent assistants that can help blind and visually impaired individuals efficiently conduct daily tasks, such as reading a book or newspaper and efficiently accessing the Web and participating in classes,” explained Bourbakis, who has been involved in computer engineering eye research for 20 years.


Tyflos, the Greek word for blind, is the name of the portable, wearable device Bourbakis has developed. The partnering project at ASU is called iLearn. A tiny camera is mounted to glasses and connected by a thin wire to a modified lap-top computer the individual carries on his or her back. The Tyflos system operates by identifying the images “seen” by the camera and converting this to audio information the subject hears from small wires connected from the backpack to the ear. A small microphone is attached for receiving commands or requests from the user.

Bourbakis, who started on this project in 1995, plans to work with the WSU Office of Disability Services to test the device’s capabilities on visually impaired students. In addition, he is working on an extension of the Tyflos system that enables blind individuals to independently navigate their working and living environments. Two future extensions of the Tyflos system will offer writing and drawing assistance that will enable the visually impaired to visually express their artistic talent beyond the usual levels.

“The Tyflos camera captures images from the surroundings, and the portable computer reconstructs the 3D space for motion detection, body tracing, face recognition and moving objects,” explained Bourbakis, who also directs the Information Technology Research Institute and the Assistive Technology Research Laboratory at Wright State.

“This will make it possible for the blind and vision impaired to improve their independent mobility and social interaction, while succeeding in their professional endeavors. It is a great feeling for visually impaired people to make the first call in a conversation, like hi John, rather than waiting for somebody to talk to them. We are using state-of-the-art computer vision and robotics technology that will help the users tremendously in recognizing faces, objects, reading books, surfing the Web and safely navigating in dynamic environments.”

He said the applications of the project are substantial, with an estimated 45 million blind individuals in the world, according to a World Health Report.

Funding for the project includes a $1.1 million National Science Foundation grant to ASU and Wright State. This was awarded last fall for four years.

For more details on Tyflos, contact Bourbakis at (937) 775-5138 or bourbaki@cs.wright.edu.

Richard Doty | Wright State University
Further information:
http://www.wright.edu/cgibin/news_item.cgi?663

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>