Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NC State Scientists Develop Breakthrough Internet Protocol


Researchers in North Carolina State University’s Department of Computer Science have developed a new data transfer protocol for the Internet that makes today’s high-speed Digital Subscriber Line (DSL) connections seem lethargic.

The protocol is named BIC-TCP, which stands for Binary Increase Congestion Transmission Control Protocol. In a recent comparative study run by the Stanford Linear Accelerator Center (SLAC), BIC consistently topped the rankings in a set of experiments that determined its stability, scalability and fairness in comparison with other protocols. The study tested six other protocols developed by researchers from schools around the world, including the California Institute of Technology and the University College of London.

Dr. Injong Rhee, associate professor of computer science, said BIC can achieve speeds roughly 6,000 times that of DSL and 150,000 times that of current modems. While this might translate into music downloads in the blink of an eye, the true value of such a super-powered protocol is a real eye-opener.

Rhee and NC State colleagues Dr. Khaled Harfoush, assistant professor of computer science, and Lisong Xu, postdoctoral student, presented a paper on their findings in Hong Kong at Infocom 2004, the 23rd meeting of the Institution of Electrical and Electronics Engineers Communications Society, on Thursday, March 11.

Many national and international computing labs are now involved in large-scale scientific studies of nuclear and high-energy physics, astronomy, geology and meteorology. Typically, Rhee said, “Data are collected at a remote location and need to be shipped to labs where scientists can perform analyses and create high-performance visualizations of the data.” Visualizations might include satellite images or climate models used in weather predictions. Receiving the data and sharing the results can lead to massive congestion of current networks, even on the newest wide-area high-speed networks such as ESNet (Energy Sciences Network), which was created by the U.S. Department of Energy specifically for these types of scientific collaborations.

The problem, Rhee said, is the inherent limitations of regular TCP. “TCP was originally designed in the 1980s when Internet speeds were much slower and bandwidths much smaller,” he said. “Now we are trying to apply it to networks that have several orders of magnitude more available bandwidth.” Essentially, we’re using an eyedropper to fill a water main. BIC, on the other hand, would open the floodgate.

Along with postdoctoral student Xu, Rhee has been working on developing BIC for the past year, although Rhee said he has been researching network congestion solutions for at least a decade. The key to BIC’s speed is that it uses a binary search approach – a fairly common way to search databases – that allows for rapid detection of maximum network capacities with minimal loss of information. “What takes TCP two hours to determine, BIC can do in less than one second,” Rhee said. The greatest challenge for the new protocol, he added, was to fill the pipe fast without starving out other protocols. “It’s a tough balance,” he said.

By allowing the rapid transfer of increasingly large packets of information over long distances, the new protocol could boost the efficacy of cutting-edge applications ranging from telemedicine and real-time environmental monitoring to business operations and multi-user gaming. At NC State, researchers could more readily visualize, monitor and control real-time simulations and experiments conducted at remote computing clusters. BIC might even help avoid a national disaster: The recent blackout that affected large areas of the eastern United States and Canada underscored the need to spread data-rich backup systems across hundreds of thousands of miles.

With network speeds doubling roughly annually, Rhee said the performances demonstrated by the new protocol could become commonly available in the next few years, setting a new standard for full utilization of the Internet.

Jon Pishney | NC State University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>