Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NC State Scientists Develop Breakthrough Internet Protocol

16.03.2004


Researchers in North Carolina State University’s Department of Computer Science have developed a new data transfer protocol for the Internet that makes today’s high-speed Digital Subscriber Line (DSL) connections seem lethargic.



The protocol is named BIC-TCP, which stands for Binary Increase Congestion Transmission Control Protocol. In a recent comparative study run by the Stanford Linear Accelerator Center (SLAC), BIC consistently topped the rankings in a set of experiments that determined its stability, scalability and fairness in comparison with other protocols. The study tested six other protocols developed by researchers from schools around the world, including the California Institute of Technology and the University College of London.

Dr. Injong Rhee, associate professor of computer science, said BIC can achieve speeds roughly 6,000 times that of DSL and 150,000 times that of current modems. While this might translate into music downloads in the blink of an eye, the true value of such a super-powered protocol is a real eye-opener.


Rhee and NC State colleagues Dr. Khaled Harfoush, assistant professor of computer science, and Lisong Xu, postdoctoral student, presented a paper on their findings in Hong Kong at Infocom 2004, the 23rd meeting of the Institution of Electrical and Electronics Engineers Communications Society, on Thursday, March 11.

Many national and international computing labs are now involved in large-scale scientific studies of nuclear and high-energy physics, astronomy, geology and meteorology. Typically, Rhee said, “Data are collected at a remote location and need to be shipped to labs where scientists can perform analyses and create high-performance visualizations of the data.” Visualizations might include satellite images or climate models used in weather predictions. Receiving the data and sharing the results can lead to massive congestion of current networks, even on the newest wide-area high-speed networks such as ESNet (Energy Sciences Network), which was created by the U.S. Department of Energy specifically for these types of scientific collaborations.

The problem, Rhee said, is the inherent limitations of regular TCP. “TCP was originally designed in the 1980s when Internet speeds were much slower and bandwidths much smaller,” he said. “Now we are trying to apply it to networks that have several orders of magnitude more available bandwidth.” Essentially, we’re using an eyedropper to fill a water main. BIC, on the other hand, would open the floodgate.

Along with postdoctoral student Xu, Rhee has been working on developing BIC for the past year, although Rhee said he has been researching network congestion solutions for at least a decade. The key to BIC’s speed is that it uses a binary search approach – a fairly common way to search databases – that allows for rapid detection of maximum network capacities with minimal loss of information. “What takes TCP two hours to determine, BIC can do in less than one second,” Rhee said. The greatest challenge for the new protocol, he added, was to fill the pipe fast without starving out other protocols. “It’s a tough balance,” he said.

By allowing the rapid transfer of increasingly large packets of information over long distances, the new protocol could boost the efficacy of cutting-edge applications ranging from telemedicine and real-time environmental monitoring to business operations and multi-user gaming. At NC State, researchers could more readily visualize, monitor and control real-time simulations and experiments conducted at remote computing clusters. BIC might even help avoid a national disaster: The recent blackout that affected large areas of the eastern United States and Canada underscored the need to spread data-rich backup systems across hundreds of thousands of miles.

With network speeds doubling roughly annually, Rhee said the performances demonstrated by the new protocol could become commonly available in the next few years, setting a new standard for full utilization of the Internet.

Jon Pishney | NC State University

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>