Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fault tolerance: a "technological lifejacket"

16.03.2004


As more and more industries use complex technologies, their designers see the need to adopt systems that continue to function even if a component fails - an adoption that promises to be made considerably easier by the work of AMATISTA.



The IST project AMATISTA resulted in the development of what are possibly the first automatic fault tolerance (FT) insertion and simulation tools for the computer-aided design (CAD) of integrated circuits, or microchips. Now, some of the project partners are set to embark on a new initiative that will further advance the development of fault tolerant applications for use in a broad range of sectors where reliability, efficiency and robustness that today are critical, but shall be usual in the near future for daily applications including space, avionics, automotive and medical applications.

Testing their tools


Alcatel Espacio, which coordinated the project and will also be involved in the new initiative, tested the AMATISTA fault tolerance insertion tool, and fault injection and simulation tool on the design of field programmable gate arrays (FPGAs) and application specific integrated circuits (ASICs) for use in satellites. Project partner Fiat CRF, the research department of the Italian car maker, ran tests on the design of the circuits used in the engine control units of cars. The trials indicated that the CAD tools allow designers to increase production of FT circuits by as much as 35 per cent, with errors reduced to a minimum and reliability increased.

"The problem of designing FT circuits in the past has been that designers have had to do so manually, which is time consuming and can result in errors occurring during the design process especially as there was no way of testing the end result, before manufacturing" notes Luis Berrojo, technical manager of AMATISTA. "The AMATISTA tools, however, allow designers to avoid making errors, they can automatically insert fault tolerant structures based on recommendations of the best available options and can run simulated errors to see how the design functions."

The AMATISTA project focused on the introduction of FT structures into hardware at the register transfer level, concentrating on the duplication of circuitry to allow systems to function by bypassing faulty elements.

"In the aerospace sector it has always been necessary to ensure designs are robust," explains project manager Rafael Rey Gómez at Alcatel Espacio. "Satellites are put into a very hard testing environment, facing high radiation and dramatic changes temperature, making fault tolerance obligatory. You can’t go up there to repair a faulty circuit so basically you have to build two satellites in one, with the duplication of all of their components. The worst fear of a designer is a fault that results in a complete failure and the loss of the satellite."

With applications for other sectors

This need for reliability, however, is also becoming crucial in other sectors, due to the increased use of advanced technology in every walk of life from cars and trains to communications. "There is evidently a need for FT not just in the aerospace sector, but also in car manufacturing, in industry, in nuclear plants, in the energy sector, in telecommunications and in the military," explains Berrojo. Fiat’s involvement in the project reflects a realisation on the part of car makers that fault tolerance is a necessary element in the high-tech cars being built today with their onboard computers and automatic systems.

"Most research until now has focused on making computer systems faster and more powerful, on pushing the limits of technology, but we are getting to the point where we don’t necessarily need all that speed and power, what we need is reliability, especially with more technology being packed into smaller spaces there is more risk of something going wrong," Rey Gómez stresses. "That is true of a car, a train, a satellite or a medical device - you can’t have a top of the range machine in a hospital if it breaks down when you need to use it... or have the brakes fail on a car."

Ensuring reliability in many application areas and building on the results of AMATISTA will be the aim of the new project that has been proposed by Alcatel Espacio together with iRoC Technologies of France and several other European technology firms under the EUREKA pan-European network for market-oriented, industrial R&D. The project, which will also involve companies such as Phillips, EADS and Airbus, is expected to result in commercially available CAD tools, and promises to represent further progress in the design of FT circuits and the reliability of applications where they are employed.

"Fault tolerance not only makes systems more efficient, in doing so it can save lives, whether in a hospital, a car or an airplane," Rey Gómez says. "It is basically a technological lifejacket."

Contact:
Rafael Rey Gómez / Luis Berrojo
Alcatel Espacio SA
Calle Einstein 7
E-28760 Tres Cantos
Madrid, Spain
Tel: +34-91-8077900/+34-91-8077994
Fax: + 34-91-8077999
Email: Rafael.Rey_Gomez@alcatel.es/ Luis_rafael.Berrojo_Valero@alcatel.es
Source: Based on information from AMATISTA

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=63017

More articles from Information Technology:

nachricht Making Waves
29.06.2017 | Institute of Science and Technology Austria

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>