Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eyeing up the future of real-time image processing

09.03.2004


Leading the way in real-time image processing are two spin-off companies whose state-of-the-art microprocessors are opening up a new range of applications in areas as broad as communications, manufacturing and the military.



Inspired by the workings of the human eye, the IST project DICTAM developed a series of mixed-signal visual microprocessors that are among the fastest and most complex ever created, capable of processing up to 50,000 images per second. Baptised by the project partners as Analogic Cellular Engines (ACE), these ACE chips represent the core of a new generation of artificial vision systems that promise to enhance fault-detection in manufacturing, increase transportation safety and provide new communications services among an almost endless range of uses.

"It is impossible to imagine what these chips will do in the future," explains project coordinator Angel Rodríguez-Vázquez of the Seville Microelectronics Institute. "They have the potential to change our vision of what computers are capable of."


Now, a year after the project ended, DICTAM’s two spin-off companies AnaFocus in Spain and AnaLogic in Hungary are commercialising the results, working in research in both the public and private sectors, with companies such as Siemens, Hewlett-Packard and Volvo. Within two years, AnaFocus will have developed a commercially available ultra-fast image processing chip no larger than 5mm x 5mm that will cost no more than 18 euros.

"Artificial vision is not just capturing images - cameras do that," Rodríguez-Vázquez notes. "Vision is having stand-alone integrated circuits that process, interpret and, further down the line, make decisions based on the images they see."

A revolutionary approach

Chips with those capabilities have in the past proven prohibitively expensive, power-hungry and often too slow to provide real-time processing. Those chips, however, carried out all processing in the digital domain; with analogue used as a mere interface with the real world. But DICTAM took an unconventional approach, using analogue transistors to carry out pre-processing and by doing so achieve nothing less than a revolution in vision systems.

"With digital systems all the information from an image is processed and that causes bottlenecks at the transition between the analogue optical sensors and the digital processing domain, draining power and computing resources," the project coordinator explains. "With the analogue cells in the ACE chips carrying out pre-processing, information is cut down to only what is essential for interpretation."

In effect, the DICTAM project moved the border between analogue and digital to create mixed-signal chips that capture and process images in parallel, thereby approximating to the functions of the human eye.

"To risk oversimplifying, it could be said that the analogue domain represents the work of the retina, it does the pre-processing, and the digital domain the brain, which does the post-processing," Rodríguez-Vázquez says.

Three generations of chips

During the course of the DICTAM project two generations of chips were designed, as well as a third diversification that far surpassed the project partners’ original goals. This sub-generation chip, called the CACE1k, approximates most closely to what we know about human vision functions. Its memory cells save intra-frame, i.e. not only moving images broken down into static frames but also the dynamic information contained within each frame. The other two chips, the second-generation ACE4k and the third-generation ACE16k, save frame-by-frame. All, however, represent a significant advance in terms of speed, power consumption and cost compared to previous systems due to their unique analogue-digital, or mixed signal, architecture.

"The ACE16k, for example, has almost four million transistors of which 80 per cent are analogue," Rodríguez-Vázquez notes. "Each analogue transistor has 128 states, i.e. 128 things it can do, whereas digital transistors have two states - that is where we gain the acceleration in processing speed."

The three chips have their own specific properties and further development promises to convert them, or future variants of them, into everyday aspects of life.

"Chips such as these have an unimaginable range of uses," Rodríguez-Vázquez emphasises. "To name but a few, we have been working on their application in consumer electronics and toys; in surveillance cameras; in the automobile industry for increasing safety in airbag-release systems and as sensory systems to detect objects around vehicles; in manufacturing to detect faults in objects on production lines; in real-time video compression and communications; and obviously there are security and military uses."

In the manufacturing sector for example, around 60 per cent of European companies could probably make use of vision systems, which when employed with the ACE chips would increase productivity by up to 10 per cent and inspection accuracy on production lines by up to 30 per cent, the project estimates.

"Humans don’t take into account the number of things we do with our ability to see, we take it for granted despite the fact that we obtain 60 per cent of our sensory information from sight," Rodríguez-Vázquez notes. "If we give computers just a fraction of that ability... well, the possibilities are endless."

Contact:
Angel Rodríguez-Vázquez
Instituto de Microelectrónica de Sevilla
Avda. Reina Mercedes s/n (Edificio CICA)
E-41012 - Seville
Spain
Tel: +34-95-5056666/ +34-95-4081251
Fax: +34-95-5056686
Email: angel@imse.cnm.es
Source: Based on information from DICTAM

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=62925

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>