Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University Of Pittsburgh Medical Center studying promising new imaging technology

18.02.2004


New technology developed by GE may help radiation oncologists more accurately target tumors



A new imaging technology developed by GE Medical Systems and currently being evaluated at the University of Pittsburgh Medical Center (UPMC) may allow radiation oncologists to precisely track tumor movement and avoid excess doses of radiation for patients under treatment for cancer. Preliminary results at UPMC demonstrate that Advantage™ 4D (Adv4D) limits the exposure of radiation to healthy tissue surrounding a tumor by allowing radiation oncologists to precisely visualize and assess its structure and movement.

"One of the challenges of treatment planning for radiation therapy is pinpointing radiation precisely to target a tumor and decreasing the amount of healthy tissue that may be exposed to radiation," said Andrew Wu, Ph.D., director of medical physics at UPMC. "Tumors are akin to moving targets. As a patient inhales and exhales, the tumor moves, making it challenging to target the tumor and to avoid exposure of radiation to the area that surrounds the tumor."


According to Dr. Wu, Adv4D is promising because it is one of the first technologies of its kind to allow physicists to perform respiratory gating – precisely following the movement of a tumor according to a patient’s breathing cycle.

"What makes GE’s Advantage 4D CT respiratory gating system different than any other similar software is the ability to superimpose tumor or organ definitions over CT images in a movie loop," said Bob Beckett, global manager, CT oncology for GE Medical Systems. "This unique advantage allows doctors to confidently evaluate the effects of motion on target volumes to help ensure the tumor receives the full amount of the treatment dose."


UPMC is one of five centers across the country currently evaluating Adv4D. Results from the first 15 patients evaluated at UPMC indicate that the technology improves the ability to develop more precise treatment plans. Preliminary findings show that this technology incorporated with intensity modulated radiation therapy (IMRT) – a radiation technology that allows the delivery of extremely precise doses of radiation to destroy cancer cells while minimizing harm to surrounding normal and healthy tissues – may potentially allow lung and ovarian cancer patients to be treated with high precision and low complications.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>