Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The sensor revolution

16.02.2004


NSF sensors activities in focus at AAAS annual meeting in Seattle



In the 1990s, the Internet connected us to a planet-wide web of information-all the zillions of bits that are stored in computer memories and hard drives. But now, thanks to an ongoing revolution in highly miniaturized, wirelessly networked sensors, the Internet is reaching out into the physical world, as well.

"We call it ’the Embedding of the Internet’," says Deborah Estrin, who is a computer scientist of the University of California, Los Angeles, and director of the Center for Embedded Networked Sensing, a multi-university research partnership that was launched in August 2002 with funding by the National Science Foundation (NSF). "And it’s going to transform our ability to understand and manage the physical world around us."


Indeed, that prospect has led the NSF to fund sensor research for the past decade and more, culminating in a foundation-wide Sensors and Sensor Networks Program that was begun in 2003 with a first-year funding of $47 million. Among the likely applications:


Networks of wireless environmental sensors could be deployed in remote areas to monitor factors such as the moisture load of the vegetation (and thus the degree of fire danger); agricultural runoff in rivers, streams, and groundwater; seismic events; air quality; and the ecosystem’s overall response to climate change.

Bridges and buildings with built-in sensor networkscould report on their own structural integrity, and pinpoint internal damage after an earthquake.

Networks of miniature chemical and biological sensors could be deployed in hospitals, post offices, and other sensitive areas to raise the alarm at the first sign of anthrax, smallpox, ricin, or other indications of a terrorist attack.

Clusters of "smart," but almost undetectably small sensors could be scattered across a stretch of hostile territory by air to monitor traffic and troop movements.
Sensors and their applications will also be very much in evidence at the Seattle meeting of the American Association for the Advancement of Science (AAAS). Among the most prominent events will be two topical lectures:

Deborah Estrin: Instrumenting the World with Wireless Sensor Networks Friday, February 13, 2004, 1:30 to 2:15 p.m.

Larry R. Dalton: Electro-Optics for the Next Generation Information Technology, Sensing, And Defense Applications Friday, February 13, 2004, 1:30 to 2:15 p.m. Dalton is director of the NSF-funded Center on Materials and Devices for Information Technology Research at the University of Washington.

But other sessions will be dealing with sensors, as well:

Cyberinfrastructure: Revolutionizing Environmental Science in the 21st Century Friday, February 13, 2004, 9:00 a.m. - 12:00 noon & 2:30 p.m. -5:30 p.m. Estrin will be giving a technical talk in the afternoon session. "Cyberinfrastructure" is a term that ’s come to describe NSF’s most expansive, long-term vision of computing-a vision that most definitely includes extensive sensor networks.

Miniaturization of Chemical, Energy and Biological Systems for Security Applications Friday, February 13, 2004, 2:30 p.m. - 5:30 p.m.

2004 Nanotechnology Seminar: Chemical and Biological Nanosensors Friday, February 13, 2004, 10:00 a.m. - 1:00 p.m.

21st Century Photonics Sunday, February 15, 2004, 9:00 a.m. - 12:00 noon & 2:30 p.m. -5:30 p.m. Larry Dalton will be speaking in the morning session.

Mitchell Waldrop | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>