Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UC San Diego scientists unveil pilot project for automated monitoring of animal behavior


Professor Belongie
Credit: UC - San Diego

Smart Vivarium
Credit: UC - San Diego

’Smart vivarium’ could enable better care of laboratory animals

Computer scientists and animal care experts at the University of California, San Diego (UCSD) have come up with a new way to automate the monitoring of mice and other animals in laboratory research. Combining cameras and distributed, non-invasive sensors with elements of computer vision, information technology and artificial intelligence, the Smart Vivarium project aims to enhance the quality of animal research, while at the same time enabling better health care for animals.

The pilot project is led by Serge Belongie, an assistant professor in Computer Science and Engineering at UCSD’s Jacobs School of Engineering. It is funded entirely by the California Institute for Telecommunications and Information Technology [Cal-(IT)²], a joint venture of UCSD and UC Irvine. "Today a lot of medical research relies on drug administration and careful monitoring of large numbers of live mice and other animals, usually in cages located in a vivarium," said Belongie. "But it is an entirely manual process, so there are limitations on how often observations can be made, and how thoroughly those observations can be analyzed."

Belongie put together an interdisciplinary team to develop the hardware and software for automated, 24-hour-a-day monitoring and archiving of a continuous stream of measurements on animal behavior -- rather than periodic observations by a lab technician. So far, Belongie has demonstrated his computer-vision and pattern-recognition software with data from a single cage, but the deployment inside a full-scale vivarium is still in the proposal stages. Noted Belongie: "We are now hoping to embark on a multi-million-dollar project that would allow us to develop and deploy the technology for two key areas -- medical research, and emergency response."

UCSD is a major biological sciences research center, and animal-care specialists believe the technology under development could dramatically improve the care of research animals. "The Smart Vivarium will make better use of fewer lab animals and lead to more efficient animal health care," said Phil Richter, Director of UCSD’s Animal Care Program, who is working with Belongie on the project. "Sick animals would be detected and diagnosed sooner, allowing for earlier treatments." The technology would also help to reduce the number of animals needed in scientific investigations. "In medical research, experiments are sometimes repeated due to observational and analytical limitations," said Belongie. "By recording all the data the first time, scientists could go back and look for different patterns in the data without using more mice to perform the new experiment."

For many of the same reasons, the underlying technology could be useful for the early diagnosis and monitoring of sick animals in zoos, veterinary offices and agriculture. ("Early detection of lameness in livestock," noted Belongie, "could help stop the transmission of disease.") The computer scientist also intends to seek collaboration with the San Diego Zoo and other local institutions for practical field deployment of the monitoring systems as part of an upcoming study.

A possible ancillary use for this technology could be for emergency response, specifically, for monitoring so-called ’sentinel’ cages. "This is the modern-day version of the canary in a coal mine," said Belongie. "Animals can be very sensitive to chemical or biological agents, and sentinel cages have already been deployed at potential bio-terrorism targets and chemical research facilities to warn operators of gas or other leaks. Instead of requiring that a human watch each animal in each cage for early warning signs, the Smart Vivarium technology would automate the process, resulting in reduced need for such sentinels."

As for improvements in medical research from the continuous monitoring of lab animals, Belongie expects at least an improvement of two orders of magnitude in the automated collection and processing of monitoring data. "Continuous monitoring and mining of animal physiological and behavioral data will allow medical researchers to detect subtle patterns expressible only over lengthy longitudinal studies," noted Belongie. "By providing a never-before-available, vivarium-wide collection of continuous animal behavior measurements, this technology could yield major breakthroughs in drug design and medical research, not to mention veterinary science, experimental psychology and animal care."

Apart from Belongie and officials from the UCSD Animal Care Program, two Jacobs School of Engineering faculty members are collaborating on the project: Bioengineering professor Geert W. Schmid-Schonbein, a leader in microcirculation research, who is providing input on how to maximize the utility of the design of the Smart Vivarium; and Computer Science and Engineering professor Rajesh Gupta, who is leading the effort to create a distributed, embedded platform that will integrate all of the functions in a tiny silicon-based package that could be mounted on existing lab cages without requiring a wholesale redesign of cages used by vivarium operators. "This project typifies the interdisciplinary nature of our research," said Ramesh Rao, UCSD Division Director of Cal-(IT)2. "Professor Belongie and his colleagues are working to produce a practical system that will require overcoming huge research challenges in areas as diverse as computer vision, bioengineering, embedded systems design, and animal care protocols. And based on the pilot project so far, they are off to a good start."

Note to Editors: Photos of Professor Belongie and a computer vision-enabled cage can be downloaded from the Faculty & Students and Research sections of the Image Gallery at

About Cal-(IT)²

The California Institute for Telecommunications and Information Technology is one of four institutes created by the State in late 2000 to ensure that California maintain its leadership in cutting-edge technologies. Cal-(IT)²’s mission: to extend the reach of the current information infrastructure throughout the physical world enabling anywhere/anytime access to the Internet. More than 220 professors and senior researchers from UC Irvine and UC San Diego are collaborating on interdisciplinary projects.

Media contact: Doug Ramsey (858) 822-5825

Doug Ramsey | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Green Light for Galaxy Europe
15.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Tokyo Tech's six-legged robots get closer to nature
12.03.2018 | Tokyo Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>