Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cyberinfrastructure Poised To Revolutionize Environmental Sciences And Other Disciplines

10.02.2004


The convergence of information and communication technologies into a national "cyberinfrastructure" is poised to revolutionize the environmental sciences and many other disciplines in the coming years, according to researchers presenting at the AAAS Annual Meeting in Seattle. The two Feb. 13 sessions on cyberinfrastructure were organized by the heads of two National Science Foundation (NSF) directorates.

The speakers will describe a very near future in which computing capabilities will provide better forecasts of when and where earthquakes are likely to occur and how the ground will shake as a result. Global climate models will simulate complex chemical, biological and geological processes in the Earth’s air, oceans and land over thousands of years. Robotic sensors will monitor ecosystem health or track pollutants in urban watersheds in real- time.

"New instrumentation, data-handling and computation capabilities will expand the horizons of what we can study and understand about the environment," said Margaret Leinen, head of NSF’s Geosciences directorate and co-organizer of the two AAAS symposia. "Cyberinfrastructure is empowering a new generation of environmental researchers in their quest to unravel how the world around us works." Cyberinfrastructure has become a common theme throughout NSF, and every directorate has funded or is exploring cyberinfrastructure-related projects.



In environmental science, cyberinfrastructure combines computation, information management, networking and intelligent sensing systems into powerful tools that permit scientists to investigate the natural world and the humanbuilt environment in their full complexity, from the molecular scale to the planetary. This complexity requires collecting and analyzing large volumes of data, performing experiments with computer models rather than just in laboratories and bringing together collaborators from many disciplines.

The challenges of vast amounts of data and complex processes across many scales are faced by many, if not all, scientific disciplines. The NSF’s larger goal for a national cyberinfrastructure is to provide the information technology and knowledge management resources needed to tackle the problems at the frontiers of all science and engineering disciplines, and make those resources as reliable and easy to use as the electricity and water in our homes.

"From the Internet to the Extensible Terascale Facility, the emerging cyberinfrastructure NSF supports is a product of the scientific community’s demands for and reliance on information and communications technologies," said Peter Freeman, head of the NSF’s Computer and Information Science and Engineering (CISE) directorate and the symposia’s other co-organizer. NSF’s Extensible Terascale Facility is a multiyear effort to deploy a comprehensive infrastructure of computation, information and instrumentation resources for academic research and education.

New CISE division director for Shared Cyberinfrastructure, Sangtae Kim, will co-chair the symposia. Kim is the Donald W. Feddersen Distinguished Professor at Purdue University, an endowed chair for research at the intersection between information technology and engineering, and was vice president and information officer of Lilly Research Laboratories.

Last February, a report from the NSF Advisory Committee for Cyberinfrastructure noted that cyberinfrastructure is "essential, not optional, to the aspirations of research communities" and that success would require collaboration between the physical and life sciences, computer science and the social sciences.

The AAAS symposia bring together computer and environmental scientists, many collaborating on NSF awards, to describe research at the frontiers of computer science that is leading to cyberinfrastructure and the groundbreaking research in environmental science that will be possible when tapping into vast computation and data resources becomes as easy as turning on a light switch.

Deborah Estrin, director of the NSF-funded Center for Embedded Network Sensing at UCLA, will describe how networks of smart sensors are being deployed to monitor and collect information on endangered species, soil and air contaminants and medical patients, as well as buildings, bridges and other man-made structures. Estrin is also slated to deliver an AAAS topical lecture on "Instrumenting the World with Wireless Sensor Networks."

To better predict earthquake occurrence and the resulting ground motion, NSF is supporting the Community Modeling Environment project, led by the Southern California Earthquake Center (SCEC). The project’s goals are to better understand earthquakes and to provide information crucial to designing civil infrastructure and to disaster planning in regions such as Southern California. SCEC’s Thomas Jordan will discuss both the scientific advances and the cyberinfrastructure from the project, including smart modeling tools and the shared computing environment and virtual community created between SCEC, the University of Southern California, the San Diego Supercomputer Center and the Pittsburgh Supercomputing Center.

Research on the weather, the climate and the whole-Earth system will also benefit from the capabilities of a comprehensive cyberinfrastructure. Bob Wilhelmson of the National Center for Supercomputing Applications at the University of Illinois, Urbana- Champaign, will describe how the NSF-funded Linked Environments for Atmospheric Discovery project will integrate many real-time data streams with customized weather models and on-demand computing to provide timely severe weather forecasts in unprecedented detail.

Jeffrey Kiehl of the NSF-supported National Center for Atmospheric Research (NCAR) will describe the work done with the Community Climate System Model, one of the world’s most sophisticated climate models. Developed by a consortium of climate and computer scientists, this experimental tool integrates global models of the atmosphere, ocean, land and sea- ice to study the Earth’s climate. And Timothy Killeen, director of NCAR, will discuss whole-Earth system modeling and the multi-agency Earth System Modeling Framework collaboration.

Ecologists and biodiversity researchers face challenges in accessing and integrating the data needed to ask groundbreaking questions and to help scientists, policymakers and the public make informed decisions about the environment. William Michener of NSF’s Long-Term Ecological Research (LTER) Network Office will discuss how the NSFsupported Science Environment for Ecological Knowledge (SEEK) project is tackling the challenges of integrating data collections. When these integrated collections are combined with modern reasoning software, the computer can become a scientist’s "intelligent assistant."

Other symposia speakers include Dan Reed of the University of North Carolina and a well-known leader in cyberinfrastructure; William Swartout of the University of Southern California’s Institute for Creative Technologies; Jeffrey Naughton of the University of Wisconsin; and Tom Anderson of the University of Washington.

The two AAAS symposia on cyberinfrastructure are scheduled for Friday, Feb. 13, 9 a.m. - 12 p.m. and 2:30 p.m. - 5:30 p.m. Estrin’s topical lecture on sensor networks is 1:30 p.m. - 2:15 p.m. the same day.

Cyberinfrastructure activities are the most recent evolution of NSF’s long history of leadership in providing the most advanced information technologies for the U.S. academic community. NSF supported campus computing centers in the 1960s, established national supercomputer centers in the 1980s and supports the Extensible Terascale Facility and many other cyberinfrastructure projects today. In parallel, NSF established NSFnet in the mid- 1980s, which evolved into today’s commercial Internet, and in the 1990s helped connect hundreds of institutions to advanced research networks.

Also in the late 1990s, NSF established the Partnerships for Advanced Computational Infrastructure (PACI), which have nurtured and supported the growing demand by the science and engineering community for cyberinfrastructure. The Extensible Terascale Facility and the seeds of many cyberinfrastructure-related projects for specific disciplines, supported by NSF and other agencies, can be found in the PACI program, the NSF Middleware Initiative and projects funded through the NSF’s Information Technology Research priority area.

David Hart | NSF
Further information:
http://www.cise.nsf.gov/sci/reports/toc.cfm
http://www.nsf.gov/

More articles from Information Technology:

nachricht Controlling robots with brainwaves and hand gestures
20.06.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Innovative autonomous system for identifying schools of fish
20.06.2018 | IMDEA Networks Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>