Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mathematical algorithms might help diagnose cancer

09.02.2004


Dartmouth researchers have developed an algorithm that might someday be used to analyze blood for diagnostic purposes. Using data from a mass spectrometer, a device that generates a molecular fingerprint of biological samples, the Dartmouth team’s calculations can distinguish healthy blood from diseased blood.



This study by Ryan Lilien, a Dartmouth M.D./Ph.D. student, Hany Farid, Assistant Professor of Computer Science , and Bruce Donald, the Foley Professor of Computer Science, appeared in the Journal of Computational Biology in December 2003.

"Our algorithm, named Q5, works on the assumption that the molecular composition of the blood changes between healthy and disease states," says Donald, the senior researcher on the project. "The goal of our work is to develop minimally invasive diagnostic methods with high predictive accuracy, and this is a promising first step."


Mathematical computations are routinely developed, varied and refined to analyze mass spectrometry data. Q5 uses mathematical techniques called Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) to differentiate between the mass spectra of healthy and diseased blood samples. Q5 learns with each sample it tests, resulting in better accuracy. The algorithm compares the molecular fingerprint of each sample to identify features that differ between the healthy and disease states.

"Our algorithm detected ovarian cancer with virtually 100% accuracy and prostate cancer with approximately 95% accuracy," explains Lilien, the lead author on the paper. "Q5 analyzes the mass spec data and offers control over the threshold between healthy and disease classification. Although we only tested against ovarian and prostate cancer, we think it’s possible that Q5 may be used to test for other cancers and diseases."

The researchers explain that there is much still to be learned from the different types of information within a sample of blood, and Q5 is one means of extracting new and important data.

"Most exciting to us, unlike previous mass spec disease diagnosis methods, Q5 provides clues about the molecular identities of abnormal proteins and peptides, which often cause disease. These altered proteins can serve as biomarkers, helping doctors make diagnosis and also helping researchers design better targeted drugs," says Donald.

This research is funded by the National Institutes of Health, the National Science Foundation, the John Simon Guggenheim Foundation, and an Alfred P. Sloan Fellowship.

Sue Knapp | Dartmouth College
Further information:
http://www.dartmouth.edu/~news/releases/2004/02/04.html

More articles from Information Technology:

nachricht Who can find the fish that makes the best sound?
28.02.2017 | Technische Universität Wien

nachricht Many Android password managers unsafe
28.02.2017 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Light-emitting bubbles captured in the wild

28.02.2017 | Physics and Astronomy

Triboelectric nanogenerators boost mass spectrometry performance

28.02.2017 | Materials Sciences

Calculating recharge of groundwater more precisely

28.02.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>