Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mathematical algorithms might help diagnose cancer

09.02.2004


Dartmouth researchers have developed an algorithm that might someday be used to analyze blood for diagnostic purposes. Using data from a mass spectrometer, a device that generates a molecular fingerprint of biological samples, the Dartmouth team’s calculations can distinguish healthy blood from diseased blood.



This study by Ryan Lilien, a Dartmouth M.D./Ph.D. student, Hany Farid, Assistant Professor of Computer Science , and Bruce Donald, the Foley Professor of Computer Science, appeared in the Journal of Computational Biology in December 2003.

"Our algorithm, named Q5, works on the assumption that the molecular composition of the blood changes between healthy and disease states," says Donald, the senior researcher on the project. "The goal of our work is to develop minimally invasive diagnostic methods with high predictive accuracy, and this is a promising first step."


Mathematical computations are routinely developed, varied and refined to analyze mass spectrometry data. Q5 uses mathematical techniques called Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) to differentiate between the mass spectra of healthy and diseased blood samples. Q5 learns with each sample it tests, resulting in better accuracy. The algorithm compares the molecular fingerprint of each sample to identify features that differ between the healthy and disease states.

"Our algorithm detected ovarian cancer with virtually 100% accuracy and prostate cancer with approximately 95% accuracy," explains Lilien, the lead author on the paper. "Q5 analyzes the mass spec data and offers control over the threshold between healthy and disease classification. Although we only tested against ovarian and prostate cancer, we think it’s possible that Q5 may be used to test for other cancers and diseases."

The researchers explain that there is much still to be learned from the different types of information within a sample of blood, and Q5 is one means of extracting new and important data.

"Most exciting to us, unlike previous mass spec disease diagnosis methods, Q5 provides clues about the molecular identities of abnormal proteins and peptides, which often cause disease. These altered proteins can serve as biomarkers, helping doctors make diagnosis and also helping researchers design better targeted drugs," says Donald.

This research is funded by the National Institutes of Health, the National Science Foundation, the John Simon Guggenheim Foundation, and an Alfred P. Sloan Fellowship.

Sue Knapp | Dartmouth College
Further information:
http://www.dartmouth.edu/~news/releases/2004/02/04.html

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>