Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What stops Mars Express getting lost in space?

30.01.2004


Determining the three-dimensional position of Mars Express in space with as much precision as possible, at a distance of 155 million kilometres away from Earth, is no simple business.



If the Solar System were shrunk down so that Earth was only the size of a soccer ball, then Mars Express would be a speck of dust floating well over two kilometres away!

ESA ground stations have kept track of the spacecraft’s range and velocity ever since launch.


By measuring the ‘Doppler shift’ undergone by the signal coming from the distant spacecraft (like the changing sound of a passing police car siren), they can calculate the spacecraft velocity component along the line of sight to Earth down to a few millimetres per second.

‘Ranging’ data can be acquired simply by sending a signal to Mars Express then measuring how long it takes to come back.

These data are combined together by the mission’s Flight Operations and Navigation team with information on the various gravitational influences of the Sun and all the planets.

Even the slightest acceleration due to solar radiation pressure is used to model the spacecraft trajectory.

But ‘ranging’ only shows where the spacecraft is in a single dimension. To independently cross-check the three-dimensional position of Mars Express at any one time requires another extremely accurate navigational procedure. This is called ’Delta differential one-way ranging’, or ’Delta DOR’ for short, and is carried out on Mars Express twice a day.


Delta DOR involves performing a triangulation measurement on Mars Express by acquiring its signal with two separate ground stations located on either side of the Earth.

This is done using tracking stations at Goldstone in California, Canberra in Australia and Madrid in Spain, located about 120 degrees apart. They can measure extremely precisely the difference in acquisition time between ground stations, accurate to one thousand millionth of a second.

Radio waves travel at the speed of light, so the difference in acquisition time between the two stations can be used to get separate measurements of distance and a shared point of signal origin.

There are some errors caused by differences in the two stations’ clocks as well as atmospheric effects, but these are cancelled out with calibration measurements of quasars whose positions are extremely well known.

This technique can be used to decrease the degree of uncertainty about a spacecraft’s position down from many tens of kilometres down to a few kilometres or less.

Seeing stars keeps Mars Express in line

Besides position and velocity, the other crucial parameter is the spacecraft’s attitude, or which way it is pointing. Mars Express stays linked to ESOC with a high-gain antenna that must be kept tightly pointed at Earth to an accuracy of at least one degree.

The only time the spacecraft temporarily lost this connection was when a manoeuvre – such as the Mars Orbit Insertion on Christmas Day – required Mars Express to be pointed away from Earth. Maintaining a high level of attitude control is crucial to the mission.


The spacecraft uses a ‘star tracker’, which is basically a camera that takes pictures of the star field it is pointing at twice a second . An automatic on-board system identifies stars in each image, working from a stored library of some 3,227 stars.

The library used by Mars Express’s star tracker comes from data acquired by the ESA star-mapping mission Hipparcos in the early 1990s, which measured the position and distance of more than a million stars in space.

The star tracker can identify a maximum nine stars at any one time, identifying them in sets of three. Any pointing error or drift that is identified can be corrected using reaction wheels on the spacecraft.

All the ESOC mission team have to do is give attitude guidance – telling the system where the Sun is, where the Earth is and what to look at for any one time. This system gives a pointing accuracy of at least one hundredth of a degree.

The same star tracker hardware will help guide ESA’s Rosetta after its launch in February 2004; however the software has been updated and includes pattern recognition systems to distinguish stars from the cometary dust the spacecraft is expected to encounter as it nears its target, Comet 67P/Churyumov-Gerasimenko.

Guido De Marchi | ESA
Further information:
http://www.esa.int/export/SPECIALS/Mars_Express/SEMS5N474OD_0.html

More articles from Information Technology:

nachricht Efficient time synchronization of sensor networks by means of time series analysis
24.01.2017 | Alpen-Adria-Universität Klagenfurt

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>