Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What stops Mars Express getting lost in space?

30.01.2004


Determining the three-dimensional position of Mars Express in space with as much precision as possible, at a distance of 155 million kilometres away from Earth, is no simple business.



If the Solar System were shrunk down so that Earth was only the size of a soccer ball, then Mars Express would be a speck of dust floating well over two kilometres away!

ESA ground stations have kept track of the spacecraft’s range and velocity ever since launch.


By measuring the ‘Doppler shift’ undergone by the signal coming from the distant spacecraft (like the changing sound of a passing police car siren), they can calculate the spacecraft velocity component along the line of sight to Earth down to a few millimetres per second.

‘Ranging’ data can be acquired simply by sending a signal to Mars Express then measuring how long it takes to come back.

These data are combined together by the mission’s Flight Operations and Navigation team with information on the various gravitational influences of the Sun and all the planets.

Even the slightest acceleration due to solar radiation pressure is used to model the spacecraft trajectory.

But ‘ranging’ only shows where the spacecraft is in a single dimension. To independently cross-check the three-dimensional position of Mars Express at any one time requires another extremely accurate navigational procedure. This is called ’Delta differential one-way ranging’, or ’Delta DOR’ for short, and is carried out on Mars Express twice a day.


Delta DOR involves performing a triangulation measurement on Mars Express by acquiring its signal with two separate ground stations located on either side of the Earth.

This is done using tracking stations at Goldstone in California, Canberra in Australia and Madrid in Spain, located about 120 degrees apart. They can measure extremely precisely the difference in acquisition time between ground stations, accurate to one thousand millionth of a second.

Radio waves travel at the speed of light, so the difference in acquisition time between the two stations can be used to get separate measurements of distance and a shared point of signal origin.

There are some errors caused by differences in the two stations’ clocks as well as atmospheric effects, but these are cancelled out with calibration measurements of quasars whose positions are extremely well known.

This technique can be used to decrease the degree of uncertainty about a spacecraft’s position down from many tens of kilometres down to a few kilometres or less.

Seeing stars keeps Mars Express in line

Besides position and velocity, the other crucial parameter is the spacecraft’s attitude, or which way it is pointing. Mars Express stays linked to ESOC with a high-gain antenna that must be kept tightly pointed at Earth to an accuracy of at least one degree.

The only time the spacecraft temporarily lost this connection was when a manoeuvre – such as the Mars Orbit Insertion on Christmas Day – required Mars Express to be pointed away from Earth. Maintaining a high level of attitude control is crucial to the mission.


The spacecraft uses a ‘star tracker’, which is basically a camera that takes pictures of the star field it is pointing at twice a second . An automatic on-board system identifies stars in each image, working from a stored library of some 3,227 stars.

The library used by Mars Express’s star tracker comes from data acquired by the ESA star-mapping mission Hipparcos in the early 1990s, which measured the position and distance of more than a million stars in space.

The star tracker can identify a maximum nine stars at any one time, identifying them in sets of three. Any pointing error or drift that is identified can be corrected using reaction wheels on the spacecraft.

All the ESOC mission team have to do is give attitude guidance – telling the system where the Sun is, where the Earth is and what to look at for any one time. This system gives a pointing accuracy of at least one hundredth of a degree.

The same star tracker hardware will help guide ESA’s Rosetta after its launch in February 2004; however the software has been updated and includes pattern recognition systems to distinguish stars from the cometary dust the spacecraft is expected to encounter as it nears its target, Comet 67P/Churyumov-Gerasimenko.

Guido De Marchi | ESA
Further information:
http://www.esa.int/export/SPECIALS/Mars_Express/SEMS5N474OD_0.html

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>