Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

URI researcher develops advanced

27.01.2004


Since most criminals only strike when they aren’t being watched, reliable surveillance of homes and businesses is a round-the-clock job. A University of Rhode Island researcher has made that job considerably easier and less expensive, thanks to a new technology he developed that can automatically track moving objects in real time.



Using low-cost, commercially available hardware, the Automatic Image Motion Seeking (AIMS) camera follows a moving object and keeps the target at the center of the field of view.

"This camera has broad impact for security surveillance, because it eliminates the need to have a full-time guard watching a video screen," said Ying Sun, URI professor of electrical engineering who began developing the device in 2002. "It’s one intelligence level above any other existing system, and we’ve found the right compromise between speed and accuracy."


It’s also inexpensive. Sun, a Wakefield resident, said that the system can operate on a $30 webcam as well as on more sophisticated equipment. It just requires a motor-driven, pan-tilt camera mount and a processor. Using low-cost equipment, the system could cost less than $300, making it ideal for many home uses. And because it can track movements, one AIMS camera can be just as effective as several stationary cameras.

At a rate of 15 frames per second, the camera analyzes images for any motion. Once a moving object is found, it feeds that information to the camera mount to begin tracking the object as it moves.

"We’re working on adding ‘behavior modifiers’ to the system as well, so that once the camera identifies motion it can be programmed to continue to track a given size, shape or color regardless of any other motion," Sun said.
He also believes that a camera that can quickly track motion has a psychological effect on criminals. "If they see that the camera is following their movements, they may think that a security guard is manually operating the camera and is aware of their presence. It’s likely that the criminal would then decide to go elsewhere."

In addition to property surveillance at such places as ATM machines, businesses, warehouses, factories, and homes, the camera has applications for homeland defense, military uses, child monitoring, playground surveillance, border patrol, and video conferencing, among others.

"Existing video conferencing equipment requires the speaker to remain in one place in front of a stationary camera. With the AIMS camera people can walk around and the camera will automatically follow them," Sun said.

The technology is based on an image-processing algorithm for real-time tracking. Because of the effectiveness and computational efficiency of the algorithm, the feedback control loop can quickly achieve reliable tracking performance. The algorithm is implemented in the Visual C++ language for the Windows Operating System on a PC, however it could be configured to operate on an embedded PC, handheld computer or digital signal processor chip. Video recording can be triggered by the presence of motions and stored on a computer hard disk as AVI files. Motions can also trigger an alarm or other security measures.

Former URI graduate students Xu Han and Yu Guo worked with Sun on the project. All three are co-inventors of the AIMS tracking algorithm, which has a U.S. and international patent pending.

Todd McLeish | URI
Further information:
http://www.news.uri.edu/releases/html/04-0126-03.html

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>