Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grid technologies for the medical community

20.01.2004


Powerful computer simulation tools have been developed to assist doctors in diagnosis, pre-operation planning and surgery. So powerful in fact that many of these tools cannot be run efficiently on normal computers. The Grid, however, is much more than a normal desktop - it is a vast interconnected collection of computers, programmes and people. And the IST project GEMSS is harnessing the Grid’s processing power to place it in the hands of medical practitioners.



The GEMSS project plans to present the first prototype of its Grid middleware at the end of February along with a testbed that will be one of Europe’s first computing and resource Grids for clinical use, allowing easy access to advanced simulation and image processing tools operating at levels of speed and efficiency that conventional local hospital systems cannot match. Developed by 10 partners from academia and industry, GEMSS (Grid-Enabled Medical Simulation Services) incorporates tools designed by previous European medical projects such as BloodSim, SimBio, COPHIT and RAPT that created effective but complex and computationally demanding aids.

"Simulation and planning tools are difficult to handle and need large amounts of computing resources to be of use and provide output you can trust," explains project coordinator Jochen Fingberg of NEC Europe. "Simulation and image processing tools, such as those incorporated into GEMSS, have been largely underused until now because of that." Simply, they need more IT resources than most hospitals and clinics can afford or accommodate.


Although computer processing power and memory capacity have advanced rapidly in recent years - the raw speed of individual computers is now one million times faster than it was 50 years ago - cost-efficient local platforms are still far too slow and distributed systems are too complex to handle to solve scientific problems, not least in the medical sector where time and accuracy are crucial. The obvious solution is the Grid - a ’Web on steroids’ that harnesses the processing power of multiple computers to allow seamless access to computing resources and services over the Internet.

Testing a range of applications

The GEMSS testbed comprises six different medical applications, ranging from a tool to simulate inhaled drug delivery, which resulted from the COPHIT IST project, to a cardiovascular modelling system based on another IST project, BloodSim. By choosing a variety of different but equally highly demanding applications, the GEMSS consortium expects to prove the Grid’s potential to improve planning and diagnosis in many medical fields through predictive high-performance simulation and advanced image processing.

Following the presentation of the first prototype in February the partners will go on to carry out a series of pilot trials with medical practitioners aimed at validating the GEMSS testbed and middleware. Expectations are high. For example, the project estimates that a planning support system to model bone structures that assists in Maxillo-facial surgery could be run in as little as 10 minutes with the power of the Grid, compared to as much as four hours on an individual machine. The trials, involving neurosurgery, cardiovascular, cranial and respiratory system simulation tools, are expected to confirm such benefits and validate the medical relevance of the numerical models in the GEMSS applications.

"These time savings are crucial for the effective use of some tools," Fingberg notes. "For example the neurosurgery tool is designed to be used during surgery when the patient is on the operating table." Evidently, for both patient and surgeon, the faster data is processed the better.

But while seamless access to services and speed are important factors, so too is security.

Given the sensitive nature of the information, from bone scans to brain scans, the data required for the simulations must be processed in a secure and lawful way, a basic necessity if Grid technologies are to be employed by the medical sector.

"I don’t think the Grid is being used practically in the medical community at present - the main reason being security and legal issues," Fingberg says, noting that in evaluating existing Grid systems the project found that generic middleware provides insufficient guarantees of security and privacy.

A secure and lawful approach

GEMSS was therefore designed with a service-oriented structure that makes security easier to address, and transport level as well as end-to-end security features have been incorporated into the middleware, which will be compliant with EU laws.

For the medical sector, secure Grid technologies promise to vastly improve procedures and patient care, and perhaps most significantly, if they are to be adopted commercially, they can also provide important financial savings.

To obtain the computational power needed to efficiently use applications such as those incorporated into the GEMSS testbed, clusters of computers and IT infrastructure including expertise would be needed - something only the largest research institutions could afford. With the Grid, however, all a hospital, clinic or individual practitioner needs is a desktop computer connected to a Grid service provider via the Internet. Medical practitioners would only pay for processing power as and when they require it, rather than investing in infrastructure that is used infrequently and doesn’t allow the accommodation of new services at low cost.

But when will use of the Grid itself become commonplace in the medical sector?

"One has to be patient," Fingberg says. "We need more pilot studies that test more applications in more areas of healthcare to convince the medical community of the benefits. I think it will be at least three to five years before the medical sector makes real use of the Grid."

Set to conclude in February 2005, the GEMSS project represents an important step toward ensuring that happens.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>