Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s Biggest Computer Grid Pours Water on Troubled Oils

12.12.2003


In a unique experiment, five of the world’s fastest supercomputers, including Daresbury Laboratory-based HPCx, have been linked together into a seamless ‘Grid’ for the first time. This computational feat was matched by the unprecedented scale of the interactive calculation then carried out on this Grid, involving thousands of visualisations of around ten million times the amount of data used to play a typical home computer game. Once analysed, the data could help solve industrial problems and revolutionise the design of consumer products containing complex oil-and-water mixtures, from preventing crystallisation in oil pipelines and improving drug delivery to better shampoo and salad cream.

Scientists two continents apart plugged simultaneously into the combined processing power of HPCx and CSAR in the UK and the USA’s TeraGrid machines – loosely equivalent to 30, 000 typical PCs – to run massive three-dimensional simulations of some of the most ubiquitous and complex fluids on Earth. These adopt liquid-crystal like shapes called gyroids and their behaviour is near-impossible to predict by conventional fluid theory and simulation. ‘It’s a world-leading simulation, made possible by cutting-edge grid technology, and never before attempted on such a scale’, commented Dr Richard Blake, Associate Director of the Computational Science and Engineering Department at CCLRC Daresbury Laboratory, who coordinated the UK’s computational contribution to last month’s TeraGyroid Project experiment.

This was the first demonstration of the ambitious project, led by Peter Coveney, Professor of Physical Chemistry at University College London as part of a wider UK project, RealityGrid. The aim is to open up an entirely new field of science by exploiting the potential of interactive, high-performance computing. TeraGyroid Project scientists - the name comes from the terabytes (1, 000, 000, 000, 000 bytes) and Teraflops of data involved in the computation - want to predict the real-life behaviour of complex oil-and-water type mixtures because these are relevant to so many industrial, consumer and biochemical applications.



The new ‘Grid’ technology not only allows vast amounts of data to be handled but also speeds up its manipulation by allowing scientists to ‘steer’ a calculation as it is happening. As the simulation evolves, the models it produces are continuously converted to animated graphics that can be viewed on a laptop (and before long, also on a handheld PDA) anywhere on the Grid – each snapshot in time representing up to a billion numbers converted to pictures. Researchers can collaborate with colleagues anywhere on the Grid, throw out improbable scenarios, ‘joystick’ their way through the visual display, and return models to the supercomputers for the next stage in the simulation. ’Access to these supercomputing resources allows us to study the behaviour of complex interacting fluids on length and time scales which are totally unprecedented, in an area of utmost relevance to everyday life’, said Professor Coveney.

The TeraGyroid team scooped the High Performance Computing Challenge Award at the Supercomputing 2003 conference in Phoenix, Arizona on 20 November 2003 for their innovative demonstration.

The TeraGyroid Project was jointly funded by the UK’s Engineering and Physical Sciences Research Council (EPSRC) and the National Science Foundation, USA (NSF).

Tony Buckley | alfa
Further information:
http://www.clrc.ac.uk

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>