Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s Biggest Computer Grid Pours Water on Troubled Oils

12.12.2003


In a unique experiment, five of the world’s fastest supercomputers, including Daresbury Laboratory-based HPCx, have been linked together into a seamless ‘Grid’ for the first time. This computational feat was matched by the unprecedented scale of the interactive calculation then carried out on this Grid, involving thousands of visualisations of around ten million times the amount of data used to play a typical home computer game. Once analysed, the data could help solve industrial problems and revolutionise the design of consumer products containing complex oil-and-water mixtures, from preventing crystallisation in oil pipelines and improving drug delivery to better shampoo and salad cream.

Scientists two continents apart plugged simultaneously into the combined processing power of HPCx and CSAR in the UK and the USA’s TeraGrid machines – loosely equivalent to 30, 000 typical PCs – to run massive three-dimensional simulations of some of the most ubiquitous and complex fluids on Earth. These adopt liquid-crystal like shapes called gyroids and their behaviour is near-impossible to predict by conventional fluid theory and simulation. ‘It’s a world-leading simulation, made possible by cutting-edge grid technology, and never before attempted on such a scale’, commented Dr Richard Blake, Associate Director of the Computational Science and Engineering Department at CCLRC Daresbury Laboratory, who coordinated the UK’s computational contribution to last month’s TeraGyroid Project experiment.

This was the first demonstration of the ambitious project, led by Peter Coveney, Professor of Physical Chemistry at University College London as part of a wider UK project, RealityGrid. The aim is to open up an entirely new field of science by exploiting the potential of interactive, high-performance computing. TeraGyroid Project scientists - the name comes from the terabytes (1, 000, 000, 000, 000 bytes) and Teraflops of data involved in the computation - want to predict the real-life behaviour of complex oil-and-water type mixtures because these are relevant to so many industrial, consumer and biochemical applications.



The new ‘Grid’ technology not only allows vast amounts of data to be handled but also speeds up its manipulation by allowing scientists to ‘steer’ a calculation as it is happening. As the simulation evolves, the models it produces are continuously converted to animated graphics that can be viewed on a laptop (and before long, also on a handheld PDA) anywhere on the Grid – each snapshot in time representing up to a billion numbers converted to pictures. Researchers can collaborate with colleagues anywhere on the Grid, throw out improbable scenarios, ‘joystick’ their way through the visual display, and return models to the supercomputers for the next stage in the simulation. ’Access to these supercomputing resources allows us to study the behaviour of complex interacting fluids on length and time scales which are totally unprecedented, in an area of utmost relevance to everyday life’, said Professor Coveney.

The TeraGyroid team scooped the High Performance Computing Challenge Award at the Supercomputing 2003 conference in Phoenix, Arizona on 20 November 2003 for their innovative demonstration.

The TeraGyroid Project was jointly funded by the UK’s Engineering and Physical Sciences Research Council (EPSRC) and the National Science Foundation, USA (NSF).

Tony Buckley | alfa
Further information:
http://www.clrc.ac.uk

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>