Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s Biggest Computer Grid Pours Water on Troubled Oils

12.12.2003


In a unique experiment, five of the world’s fastest supercomputers, including Daresbury Laboratory-based HPCx, have been linked together into a seamless ‘Grid’ for the first time. This computational feat was matched by the unprecedented scale of the interactive calculation then carried out on this Grid, involving thousands of visualisations of around ten million times the amount of data used to play a typical home computer game. Once analysed, the data could help solve industrial problems and revolutionise the design of consumer products containing complex oil-and-water mixtures, from preventing crystallisation in oil pipelines and improving drug delivery to better shampoo and salad cream.

Scientists two continents apart plugged simultaneously into the combined processing power of HPCx and CSAR in the UK and the USA’s TeraGrid machines – loosely equivalent to 30, 000 typical PCs – to run massive three-dimensional simulations of some of the most ubiquitous and complex fluids on Earth. These adopt liquid-crystal like shapes called gyroids and their behaviour is near-impossible to predict by conventional fluid theory and simulation. ‘It’s a world-leading simulation, made possible by cutting-edge grid technology, and never before attempted on such a scale’, commented Dr Richard Blake, Associate Director of the Computational Science and Engineering Department at CCLRC Daresbury Laboratory, who coordinated the UK’s computational contribution to last month’s TeraGyroid Project experiment.

This was the first demonstration of the ambitious project, led by Peter Coveney, Professor of Physical Chemistry at University College London as part of a wider UK project, RealityGrid. The aim is to open up an entirely new field of science by exploiting the potential of interactive, high-performance computing. TeraGyroid Project scientists - the name comes from the terabytes (1, 000, 000, 000, 000 bytes) and Teraflops of data involved in the computation - want to predict the real-life behaviour of complex oil-and-water type mixtures because these are relevant to so many industrial, consumer and biochemical applications.



The new ‘Grid’ technology not only allows vast amounts of data to be handled but also speeds up its manipulation by allowing scientists to ‘steer’ a calculation as it is happening. As the simulation evolves, the models it produces are continuously converted to animated graphics that can be viewed on a laptop (and before long, also on a handheld PDA) anywhere on the Grid – each snapshot in time representing up to a billion numbers converted to pictures. Researchers can collaborate with colleagues anywhere on the Grid, throw out improbable scenarios, ‘joystick’ their way through the visual display, and return models to the supercomputers for the next stage in the simulation. ’Access to these supercomputing resources allows us to study the behaviour of complex interacting fluids on length and time scales which are totally unprecedented, in an area of utmost relevance to everyday life’, said Professor Coveney.

The TeraGyroid team scooped the High Performance Computing Challenge Award at the Supercomputing 2003 conference in Phoenix, Arizona on 20 November 2003 for their innovative demonstration.

The TeraGyroid Project was jointly funded by the UK’s Engineering and Physical Sciences Research Council (EPSRC) and the National Science Foundation, USA (NSF).

Tony Buckley | alfa
Further information:
http://www.clrc.ac.uk

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>