Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Manipulate Tiny, Floating Droplets on a Chip

10.12.2003


In an innovative study, researchers at North Carolina State University have designed a way to control the movement of microscopic droplets of liquid freely floating across centimeter-sized chips packed with electrodes. The discovery allows the performance of new types of chemical experiments on the microscale.

The breakthrough came as the researchers – Dr. Orlin D. Velev, assistant professor of chemical engineering, and two NC State doctoral students, Brian Prevo and Ketan Bhatt – learned how to circumvent friction by suspending the droplets of water inside a fluorinated oil, and then using electrical voltages to allow the liquid to hover over the electrical circuits of the chip. Switching the chip’s electrodes on and off – either manually or with the aid of a computer – lets researchers move the droplets across the oil surface to any location on the chip.

The chip also allows researchers to conduct experiments with mixed droplets, as liquids can be moved along different paths and then merged or encapsulated in oil or polymer droplets.



The discovery has wide-ranging scientific implications. Besides analyses and characterizations of chemical samples, the chip can serve as a tiny factory, Velev says, allowing researchers to mix droplets to test chemical reactions, for example, or add specific amounts of toxin to a cell to see how long it takes the cell to die. Velev is also eager to synthesize new particle materials or crystals inside liquids.

The research was published in the Dec. 4 edition of Nature.

“Moving droplets of liquid on solid surfaces as other researchers have done before us has a number of limitations,” Velev said. Other research in moving droplets on solid surfaces was stunted by friction if particles or solids were moved along the channels or solid surface of a chip. “But the freely suspended droplets on this microfluidic chip never touch solid walls and thus can act as reactors for materials synthesis or precipitation,” he said.

Velev’s interest in microfluidic chips stems from his lab’s work on growing self-assembling microwires by moving gold nanoparticles with alternating current in water, and his earlier work on using floating droplets as assembly sites for complex particles.

“Experiments and bioassays, or determinations of the presence or concentration of biological molecules, that we presently do with test tubes and beakers can now be done on the microscale. This device enlarges the scope and capabilities in the field of microfluidics, which is just a few years old,” Velev said.

The chip – which was simple and inexpensive to make, Velev says, and is reusable – has received a provisional patent, with application in place for a full patent.

The research is funded by Velev’s National Science Foundation Career Award and by an ARO-Stir grant.

Dr. Orlin Velev | NC State University
Further information:
http://www.ncsu.edu/

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>