Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Manipulate Tiny, Floating Droplets on a Chip

10.12.2003


In an innovative study, researchers at North Carolina State University have designed a way to control the movement of microscopic droplets of liquid freely floating across centimeter-sized chips packed with electrodes. The discovery allows the performance of new types of chemical experiments on the microscale.

The breakthrough came as the researchers – Dr. Orlin D. Velev, assistant professor of chemical engineering, and two NC State doctoral students, Brian Prevo and Ketan Bhatt – learned how to circumvent friction by suspending the droplets of water inside a fluorinated oil, and then using electrical voltages to allow the liquid to hover over the electrical circuits of the chip. Switching the chip’s electrodes on and off – either manually or with the aid of a computer – lets researchers move the droplets across the oil surface to any location on the chip.

The chip also allows researchers to conduct experiments with mixed droplets, as liquids can be moved along different paths and then merged or encapsulated in oil or polymer droplets.



The discovery has wide-ranging scientific implications. Besides analyses and characterizations of chemical samples, the chip can serve as a tiny factory, Velev says, allowing researchers to mix droplets to test chemical reactions, for example, or add specific amounts of toxin to a cell to see how long it takes the cell to die. Velev is also eager to synthesize new particle materials or crystals inside liquids.

The research was published in the Dec. 4 edition of Nature.

“Moving droplets of liquid on solid surfaces as other researchers have done before us has a number of limitations,” Velev said. Other research in moving droplets on solid surfaces was stunted by friction if particles or solids were moved along the channels or solid surface of a chip. “But the freely suspended droplets on this microfluidic chip never touch solid walls and thus can act as reactors for materials synthesis or precipitation,” he said.

Velev’s interest in microfluidic chips stems from his lab’s work on growing self-assembling microwires by moving gold nanoparticles with alternating current in water, and his earlier work on using floating droplets as assembly sites for complex particles.

“Experiments and bioassays, or determinations of the presence or concentration of biological molecules, that we presently do with test tubes and beakers can now be done on the microscale. This device enlarges the scope and capabilities in the field of microfluidics, which is just a few years old,” Velev said.

The chip – which was simple and inexpensive to make, Velev says, and is reusable – has received a provisional patent, with application in place for a full patent.

The research is funded by Velev’s National Science Foundation Career Award and by an ARO-Stir grant.

Dr. Orlin Velev | NC State University
Further information:
http://www.ncsu.edu/

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>