Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Manipulate Tiny, Floating Droplets on a Chip

10.12.2003


In an innovative study, researchers at North Carolina State University have designed a way to control the movement of microscopic droplets of liquid freely floating across centimeter-sized chips packed with electrodes. The discovery allows the performance of new types of chemical experiments on the microscale.

The breakthrough came as the researchers – Dr. Orlin D. Velev, assistant professor of chemical engineering, and two NC State doctoral students, Brian Prevo and Ketan Bhatt – learned how to circumvent friction by suspending the droplets of water inside a fluorinated oil, and then using electrical voltages to allow the liquid to hover over the electrical circuits of the chip. Switching the chip’s electrodes on and off – either manually or with the aid of a computer – lets researchers move the droplets across the oil surface to any location on the chip.

The chip also allows researchers to conduct experiments with mixed droplets, as liquids can be moved along different paths and then merged or encapsulated in oil or polymer droplets.



The discovery has wide-ranging scientific implications. Besides analyses and characterizations of chemical samples, the chip can serve as a tiny factory, Velev says, allowing researchers to mix droplets to test chemical reactions, for example, or add specific amounts of toxin to a cell to see how long it takes the cell to die. Velev is also eager to synthesize new particle materials or crystals inside liquids.

The research was published in the Dec. 4 edition of Nature.

“Moving droplets of liquid on solid surfaces as other researchers have done before us has a number of limitations,” Velev said. Other research in moving droplets on solid surfaces was stunted by friction if particles or solids were moved along the channels or solid surface of a chip. “But the freely suspended droplets on this microfluidic chip never touch solid walls and thus can act as reactors for materials synthesis or precipitation,” he said.

Velev’s interest in microfluidic chips stems from his lab’s work on growing self-assembling microwires by moving gold nanoparticles with alternating current in water, and his earlier work on using floating droplets as assembly sites for complex particles.

“Experiments and bioassays, or determinations of the presence or concentration of biological molecules, that we presently do with test tubes and beakers can now be done on the microscale. This device enlarges the scope and capabilities in the field of microfluidics, which is just a few years old,” Velev said.

The chip – which was simple and inexpensive to make, Velev says, and is reusable – has received a provisional patent, with application in place for a full patent.

The research is funded by Velev’s National Science Foundation Career Award and by an ARO-Stir grant.

Dr. Orlin Velev | NC State University
Further information:
http://www.ncsu.edu/

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>