Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Memories, Once Doubted, Prove Durable and Practical

03.12.2003


In the ongoing quest to create computing devices that are both incredibly small and incredibly powerful, scientists – envisioning a future beyond the limits of traditional semiconductors – have been working to use molecules for information storage and processing.



Until now, researchers were skeptical that such molecular devices could survive the rigors of real-world manufacturing and use, which involve high temperatures and up to one trillion operational cycles. But scientists at the University of California, Riverside and North Carolina State University have demonstrated that molecular memories are indeed both durable and practical – a finding that could spur development of the technology.

The scientists’ results, in a paper titled “Molecular Memories that Survive Silicon Device Processing and Real-World Operation,” are described in the Nov. 28 issue of the journal Science.


Dr. Jonathan S. Lindsey, Glaxo Distinguished University Professor of Chemistry at NC State and one of the paper’s authors, said the team was faced with a very basic problem. “If molecular materials can’t compete against semiconductor materials under the rigorous conditions of the real world,” he said, “then trying to implement them in electronic devices would be pointless. Because our goal is to develop molecule-based memory devices, we first had to test their durability and stability.”

Led by Dr. David F. Bocian, professor of chemistry at the University of California, Riverside, the team attached porphyrins – disk-shaped organic molecules similar to chlorophyll – with specific electronic properties to an electroactive surface, storing information in the form of the molecules’ positive charges.

After a series of tests, the scientists found that the resulting molecular memories were “extremely robust” and offered clear advantages over traditional semiconductor-based technology.

“The porphyrin-based information-storage elements exhibit charge-retention times that are long (minutes) compared with those of the semiconductor elements in dynamic random access devices (tens of milliseconds),” the university chemists report in their paper.

In addition, their testing showed that such molecule-based information-storage devices “meet the processing and operating challenges required for use in electronic devices.” In particular, they proved that “these molecules are stable under extremes of temperature (400°C) and large numbers of read-write cycles (1 trillion).”

That demonstrated stability, they conclude, “indicates that these molecular architectures can be readily adapted to current semiconductor fabrication technology and operated under the conditions required for a practical device.”

By establishing the practicality of molecular memories, says Lindsey, the findings should help eliminate doubts about the role of organic materials in electronic devices.

“There is a perception that organic molecules are fragile,” Lindsey said. “The critical question has been whether, given the high temperatures and other stresses of production and use, any molecule-based devices could meet functionality standards. I believe our research has laid this question to rest, and demonstrated that appropriately chosen molecules can readily function in practical devices.”

That knowledge, he said, should speed development of molecule-based electronics, which promise smaller, faster and far more powerful computers and other applications.

The research was funded by ZettaCore Inc. and the Defense Advanced Research Projects Agency (DARPA) Moletronics Program. Bocian and Lindsey are co-founders of ZettaCore and serve as consultants for the company.

Paul K. Mueller | NC State University
Further information:
http://www.ncsu.edu/news/press_releases/03_12/351.htm

More articles from Information Technology:

nachricht Optical fiber transmits one terabit per second – Novel modulation approach
16.09.2016 | Technische Universität München

nachricht Researchers prototype system for reading closed books
09.09.2016 | Massachusetts Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>