Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer-assisted breast imaging systems help find and characterize cancers

02.12.2003


CAD software improves breast ultrasound, digital mammograms



New computerized systems that give doctors a "second pair of eyes" for looking at mammograms and other breast scans are showing great promise for detecting breast cancer, distinguishing it from benign problems without a biopsy, and tracking changes in a woman’s breast over time.

The systems, all developed at the University of Michigan Health System, are in various stages of readiness for clinical use. But UMHS researchers will report today that they have made significant progress in using computers to increase the accuracy of interpretation of digital mammograms and breast ultrasound images.


The team will present results from several of the computer-aided diagnosis, or CAD, systems at the annual meeting of the Radiological Society of North America (RSNA).

One of the most encouraging results shows that a CAD system improved the ability of highly experienced radiologists to tell cancerous tumors from benign growths on ultrasound breast scans. Such scans are often performed after a suspicious finding on a screening mammogram, to help determine if a biopsy is needed.

The new result was achieved using ultrasound images of 102 breast masses that were later confirmed as benign or malignant by a biopsy. No cysts were included. The three-dimensional images were acquired using a conventional ultrasound machine and a mechanical transducer-guiding system developed at UMHS. Then, they were analyzed by a CAD system, and read by five breast radiologists.

After the physicians scored each mass on a scale of the likelihood of malignancy, they were shown the score assigned by the CAD system to the same mass, based on algorithms for mass shape, shadowing, and border characteristics. The physicians altered their score about one third of the time, mostly in the direction that correctly reflected the nature of the mass on biopsy. In the clinic, these score changes might mean that fewer women with benign disease would be subjected to an invasive biopsy procedure.

Of course, no one thinks computers will take over from human doctors anytime soon. "In the near future, it won’t be possible for computers to replace radiologists for this kind of test, because a radiologist looks at the patient’s entire case, not just her ultrasound images," says associate research professor Berkman Sahiner, Ph.D., who will present the results in a talk at RSNA. "But if radiologists work with computers, they could improve their accuracy and spare some women benign biopsies."

Since the 3-D CAD ultrasound system helped improve the reading of highly experienced breast radiologists -- who conduct ultrasounds on nearly every woman referred for imaging at UMHS for the evaluation of a suspicious breast mass -- it may help less-experienced physicians even more.

The U-M’s CAD Research Laboratory team, in the Basic Radiological Sciences division of the Medical School’s Department of Radiology, has worked for more than a decade to develop CAD systems for breast imaging. Led by Heang-Ping Chan, Ph.D., they work closely with clinicians in the U-M Breast Imaging Division, led by Mark Helvie, M.D., to evaluate new techniques on images from U-M patients under research protocols approved by the U-M Institutional Review Board.

In all, the team aims to use computers to improve they way radiologists detect and interpret cancers on mammograms and ultrasound images. They also hope to spare women some of the "worried waiting" and additional imaging sessions that follow an abnormal mammogram, to make additional imaging for such patients as accurate as possible, and to minimize the number of women who endure a biopsy only to find out their condition is benign.

Several commercial CAD systems for reading traditional film mammograms to increase detection – but not classification -- have been on the market for a few years. But Sahiner and his colleagues hope their CAD research will advance the field by improving mammogram classification of lesions as malignant or benign, enhancing breast ultrasound imaging, aiding with detection and classification on film and digital mammograms, and allowing precise tracking of an individual woman’s case over time.

The U-M team is also working on their ultimate goal: combining ultrasound and mammogram images to give a complete view of a breast mass. They’re developing ways to combine the two very different kinds of images digitally, and are collaborating with industry to develop a breast imaging machine that can acquire an ultrasound image and a mammogram simultaneously. The U-M team for this effort is led by Paul Carson, Ph.D., director of the Basic Radiological Sciences division.

U-M researchers will report findings from several of the projects at the RSNA meeting. Among them:

AD for detection of masses on digital mammograms:

As the popularity of film-free digital mammograms grows, the U-M team is working on a CAD system to analyze those images for better detection of suspicious areas. At the RSNA meeting, Jun Wei, Ph.D., will report that their four-part image analysis system was just as effective at detecting masses on 206 full-field digital mammograms as it was at detecting them on mammograms of the same breasts that were taken on film and then digitized. The U-M digitized-film mammogram CAD system has already been proven in previous studies and a pilot-scale clinical trial to give high detection rates, and the team has applied for a patent on the system. Now, the team plans further refinements to the CAD system to adjust it to the digital mammography images.

Tracking a woman’s breast health over time:

Almost as important as finding a woman’s breast cancer in the first place is monitoring her breast over time to catch further growth or change in suspicious areas. U-M researcher Ludomir Hadjiiski, Ph.D, will present results from 390 pairs of mammograms taken some time apart, and evaluated by five different CAD techniques for pinpointing the location and size of suspicious lesions. The highest level of accuracy was seen with a regional registration method developed by the U-M team.

Combining ultrasound and mammography in one scan:

Since women with suspicious screening mammogram findings are often referred for both additional mammography and an ultrasound, the U-M team is working with researchers from General Electric to develop a machine that can make both kinds of scan of the same area at once. At RSNA, they will report the results of initial design studies for a machine in which an automated ultrasound transducer is mounted above the compression paddle used to compress the breast for mammography. The results from studies on breast "phantoms" and on actual patients show that the paddle, made of a special plastic, doesn’t substantially affect the quality of the ultrasound image.

Kara Gavin | EurekAlert!
Further information:
http://www2.med.umich.edu/prmc/media/relarch.cfm

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>