Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites assist planners preventing floods

27.11.2003


Virtual floods modelled inside computers are an increasingly useful means for authorities to prepare for genuine river surges. With flooding classed as the world’s most costly natural hazard, an ESA project has assessed using satellite imagery to improve flood simulation models.



Flood control and management represents a major challenge for water authorities, and as the global incidence of flooding increases, it has also become a subject of concern for the global insurance industry.

The US Geological Survey estimates that flooding is the world’s most costly type of natural disaster, costing €170 billion ($200 billion) between 1991 and 1995. Last year’s European floods alone are reported to have caused more than €7 billion of damage.
Like everything linked to the weather, floods are difficult to predict – a few days of steady rainfall might be sufficient for a river to burst its banks.



What software-based flood simulation models can do is foretell how a river will behave if it does flood, and allow authorities to assess their best course of action.

"Here in Flanders, we are responsible for maintaining our many rivers and waterways, and are also tasked with preventing or controlling floods," explained Project Engineer Ingrid Boey of the Flemish Water Authority AWZ, end user for ESA’s FAME (Flood risk and damage Assessment using Modelling and Earth observation techniques) project.

"A useful research technique for us is by creating hydrodynamic simulations of our various river basins. Originally these were physical scale models – we still have those - but numerical models running in computers are increasingly important. We can use them to see what actions should be taken in particular scenarios, such as employing controlled flooding areas, locally raising dikes higher, activating pumping stations or - in extreme situations - ordering evacuations.

"From next year our models are going to used operationally to make predictions in real time, so it is vital we are sure they are as close to the real world as possible."

The problem comes in converting what are essentially one-dimensional computer models of water levels and flow into accurate depictions of the two-dimensional spatial extent of flooded areas. And when it comes to checking the models against historical floods, fully accurate spatial and temporal records can be hard to find.

"We find water levels have been recorded, but not always the full spatial extent," explained Boey. "Aerial photos are often not available, and even when they are, they don’t always cover the whole of the flooded area. Also needed are hard facts on the duration of the flood. We end up with one person remembering three days, and one person recalling two."

The idea behind the FAME project was to use satellite data as an additional means of mapping flood extent in zones close to rivers as well as creating more accurate flood risk maps and carrying out post-flood damage assessment. Project partners included SADL (Spatial Applications Division Leuven), Sarmap and D’Appolonia.

Project manager was Professor Patrick Willems of the University of Leuven’s Hydraulics Laboratory: "Our lab oversees the creation of flood control models, so I came at the problem more from the side of the user than the service provider. We focused on two flood-prone rivers, the Dender and the Demer."

ERS and Envisat radar images were acquired for the rivers corresponding to historical floods that occurred in 1993, 1995, 1998 and 2003. Because radar imagery records surface roughness instead of reflected light, it is a good means of detecting flowing and standing water. High resolution IKONOS and Landsat-ETM optical imagery became the basis of risk maps; products valued by the insurance industry as well as water authorities.

"With risk mapping you are combining three different variables," explained Willems. "First is the spatial extent – which areas will flood. Then comes the type of areas will be affected; a flooded meadow won’t cause as much damage as an inundated urban area. The final variable is the return period – will the flood recur once a year, every ten years or every 100 years?"

Combine them together and you can quantify how likely flood damage is for a given area, and be guided how much should reasonably be spent either to guard against it or insure against it. AWZ has already updated flood damage and flood risk maps in the two river basins based on the high-resolution imagery.

With historic flood mapping for simulation calibration, Envisat data was found to be more accurate than ERS. Envisat’s Advanced Synthetic Aperture Radar (ASAR) instrument has several advantages over its predecessor, including beam steering capability for increased temporal coverage, a wide swath option and alternating polarisation modes – all of which give it an edge in flood detection.

The FAME project is now formally concluded, although AWZ hopes to acquire Envisat and Radarsat data in tandem if further flooding occurs this winter, which would give an effective revisit time of one or two days. A decision has still to be made on extending the FAME service, which was funded by ESA’s Data User Programme.

"Combined with other flood information sources, satellite data can definitely be effective," said Boey. "Flanders is not a big place, so a few satellite images have the potential to provide us with objective knowledge of the whole area.

"For us, a very useful part of the FAME project has been familiarising ourselves with the area of Earth Observation, and so making it much more likely we will make operational use of it in future."

Espen Volden | ESA
Further information:
http://www.esa.int/export/esaSA/SEMLWHXLDMD_earth_0.html

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>