Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Unique software speeds calculations on one of world’s fastest supercomputers, other applications


Ohio State University software is helping some of the world’s fastest supercomputers confront big scientific questions, from global climate change to the structure of intricate molecules.

Dhabaleswar Panda

The software, called MVAPICH, works by connecting traditional supercomputing software with innovative networking technology that speeds data flow.

While supercomputers were once built only as large-scale mainframe structures that were extremely expensive -- some costing tens to hundreds of millions of dollars -- a different kind of supercomputer based on clusters of many desktop-style computers has become more common in recent years, explained Dhabaleswar Panda, professor of computer and information science at Ohio State and leader of the MVAPICH research team.

Yet complicated scientific visualizations, such as the flow of gas molecules in Earth’s atmosphere -- a critical resource for scientists studying climate change -- pose a substantial problem for cluster computing. That’s because individual computers, called nodes, must compute in a parallel manner while sending much information back and forth to each other.

“At some point, adding nodes to a cluster doesn’t make the calculations go any faster, because it introduces communication and synchronization overheads, and researchers have to rely on software to manage communication between nodes effectively,” Panda said. “MVAPICH takes that software a step further by connecting it with the emerging InfiniBand network technology.”

Most notably, Ohio State’s MVAPICH supports Virginia Tech’s innovative Macintosh-based supercomputer, which is expected to rank third on the list of the world’s top 500 fastest supercomputers Sunday at the Supercomputing Conference 2003 in Phoenix.

Another collaboration with computer chip maker Intel and leading InfiniBand developer Mellanox Technologies, Inc, of Santa Clara, California, is opening the Ohio State software to further applications in research and business. These companies have used MVAPICH to enable calculations on an off-the-shelf supercomputer that is capable of performing teraflop-level computing, or trillions of calculations per second. Intel calls-the system TOTS, for “TeraFlop-Off-the-Shelf,” and it will debut in the exhibition hall of the supercomputing conference.

Panda believes that the development of TOTS is leading to a new era of commodity systems when research labs and commercial companies with smaller budgets can benefit from supercomputing technology. MVAPICH helps to make that happen, he said.

MVAPICH bridges the gap between the traditional message passing interface (MPI) -- the software that manages communication between nodes on a supercomputer -- and the InfiniBand technology.

InfiniBand, short for “infinite bandwidth,” is a new networking architecture standard that was developed by an industry consortium to support high performance computing systems, including supercomputers.

Until Panda and Pete Wyckoff, research scientist at the Ohio Supercomputer Center, developed MVAPICH in 2002, InfiniBand and MPI were hopelessly incompatible, Panda said.

The name MVAPICH is short for “MPI for InfiniBand on VAPI Layer.” VAPI refers to the VAPI software interface developed by Mellanox. MVAPICH is pronounced like “em-vah-peach.”

Since 2002, more than 65 organizations world-wide have downloaded the open source MVAPICH code to develop applications. One of the first was Sandia National Laboratory, which recently used MVAPICH to power a large-scale (128-node) supercomputer. A similar project at Los Alamos National Laboratory involves a 256-node supercomputer.

“These projects at national labs are important, because they show that our software can scale up from small applications to large,” Panda said. At Ohio State, Panda had previously tested the software on an 8-node and 16-node cluster.

Builders of supercomputers and modern clusters can visit Panda’s Web site to download the source code for MVAPICH and work with Ohio State to develop new applications (

This is not the first time work from Ohio State and the Ohio Supercomputer Center (OSC) garnered a ranking on the top 500 list. On the current top 500 list, OSC’s cluster ranks 180.

In addition to Ohio State’s collaboration, the Virginia Tech project included collaborations from Apple Computer, Cisco, Liebert, and Mellanox.

The primary funding for Ohio State to develop MVAPICH came from Sandia National Laboratory, the Department of Energy, and the National Science Foundation. Intel provided partial funding, and Mellanox donated InfiniBand network adapters and switches to the project.


Contact: Dhabaleswar Panda, (614) 292-5199;
Written by Pam Frost Gorder, (614) 292-9475;

Pam Frost Gorder | Ohio State University
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>