Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Image processing means you can see both the wood and the trees

11.11.2003


During her doctoral research in the Netherlands, Gemma Piella developed a new method for processing images. With this method more details are visible at a lower resolution than the original image: both the wood and the individual trees are distinct. Piella also combined various images of the same object to produce a detailed complete picture.



Mathematician Gemma Piella has developed a new technique for processing images. For this she used a mathematical operation that makes use of so-called wavelets. Just like a sinus, the upward and downward deviation of each of these small waves is the same. However, the wavelets only exist over a short distance and all of the peaks and troughs have different heights and widths. These characteristics ensure that a single operation can simultaneously render both large and small objects visible. This enables you to see both the entire wood and the individual trees at the same time.

A scene can only be fully understood if it can be seen at many different levels. For example, if you see a wood from a distance, your first impression is just a green surface. If you come closer by, you can see the trees. If you zoom in even further still, you can even see the leaves and the bark. Therefore, which information you extract from the picture depends upon the level at which you see it. So-called multiresolution techniques such as those used by Piella, render all details, at every level in the image visible at the same time.


The researcher modified existing wavelet techniques. Suppose that an image contains smooth areas which are separated by pieces of regularly crooked lines. Standard wavelets are good at isolating the start and end points of the crooked lines but not in recognising the trajectory of the line. Piella ensured that the wavelets made use of the geometrical information in the signal to be processed. As a result of this even the smallest details became clearly visible in images with a low resolution.

The mathematician also used her innovative technique to combine different images of the same object into a single detailed image. This is important, for example, in medicine, where imaging techniques are used to visualise different aspects of the human body. For example, combining a CT scan and an MRI scan of the brain makes both the brain tissue and the bones visible.

For further information please contact Dr Gemma Piella (Signals and Images, CWI and now working at the Telecommunications Engineering School, Polytechnical University of Catalonia, Spain), tel. +34 (0)93 4017758, e-mail: gemma.piella@cwi.nl or her assistant supervisor Dr H.J.M.A. Heijmans, tel. +31 (0)20 5924057, e-mail: Henk.Heijmans@cwi.nl. The doctoral thesis was defended on 30 October 2003 at the Universiteit van Amsterdam. Dr Piella’s supervisor was Prof. P. W. Hemker.

Lydie van der Meer | NWO
Further information:
http://www.nwo.nl

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>