Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Image processing means you can see both the wood and the trees

11.11.2003


During her doctoral research in the Netherlands, Gemma Piella developed a new method for processing images. With this method more details are visible at a lower resolution than the original image: both the wood and the individual trees are distinct. Piella also combined various images of the same object to produce a detailed complete picture.



Mathematician Gemma Piella has developed a new technique for processing images. For this she used a mathematical operation that makes use of so-called wavelets. Just like a sinus, the upward and downward deviation of each of these small waves is the same. However, the wavelets only exist over a short distance and all of the peaks and troughs have different heights and widths. These characteristics ensure that a single operation can simultaneously render both large and small objects visible. This enables you to see both the entire wood and the individual trees at the same time.

A scene can only be fully understood if it can be seen at many different levels. For example, if you see a wood from a distance, your first impression is just a green surface. If you come closer by, you can see the trees. If you zoom in even further still, you can even see the leaves and the bark. Therefore, which information you extract from the picture depends upon the level at which you see it. So-called multiresolution techniques such as those used by Piella, render all details, at every level in the image visible at the same time.


The researcher modified existing wavelet techniques. Suppose that an image contains smooth areas which are separated by pieces of regularly crooked lines. Standard wavelets are good at isolating the start and end points of the crooked lines but not in recognising the trajectory of the line. Piella ensured that the wavelets made use of the geometrical information in the signal to be processed. As a result of this even the smallest details became clearly visible in images with a low resolution.

The mathematician also used her innovative technique to combine different images of the same object into a single detailed image. This is important, for example, in medicine, where imaging techniques are used to visualise different aspects of the human body. For example, combining a CT scan and an MRI scan of the brain makes both the brain tissue and the bones visible.

For further information please contact Dr Gemma Piella (Signals and Images, CWI and now working at the Telecommunications Engineering School, Polytechnical University of Catalonia, Spain), tel. +34 (0)93 4017758, e-mail: gemma.piella@cwi.nl or her assistant supervisor Dr H.J.M.A. Heijmans, tel. +31 (0)20 5924057, e-mail: Henk.Heijmans@cwi.nl. The doctoral thesis was defended on 30 October 2003 at the Universiteit van Amsterdam. Dr Piella’s supervisor was Prof. P. W. Hemker.

Lydie van der Meer | NWO
Further information:
http://www.nwo.nl

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>