Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Image processing means you can see both the wood and the trees

11.11.2003


During her doctoral research in the Netherlands, Gemma Piella developed a new method for processing images. With this method more details are visible at a lower resolution than the original image: both the wood and the individual trees are distinct. Piella also combined various images of the same object to produce a detailed complete picture.



Mathematician Gemma Piella has developed a new technique for processing images. For this she used a mathematical operation that makes use of so-called wavelets. Just like a sinus, the upward and downward deviation of each of these small waves is the same. However, the wavelets only exist over a short distance and all of the peaks and troughs have different heights and widths. These characteristics ensure that a single operation can simultaneously render both large and small objects visible. This enables you to see both the entire wood and the individual trees at the same time.

A scene can only be fully understood if it can be seen at many different levels. For example, if you see a wood from a distance, your first impression is just a green surface. If you come closer by, you can see the trees. If you zoom in even further still, you can even see the leaves and the bark. Therefore, which information you extract from the picture depends upon the level at which you see it. So-called multiresolution techniques such as those used by Piella, render all details, at every level in the image visible at the same time.


The researcher modified existing wavelet techniques. Suppose that an image contains smooth areas which are separated by pieces of regularly crooked lines. Standard wavelets are good at isolating the start and end points of the crooked lines but not in recognising the trajectory of the line. Piella ensured that the wavelets made use of the geometrical information in the signal to be processed. As a result of this even the smallest details became clearly visible in images with a low resolution.

The mathematician also used her innovative technique to combine different images of the same object into a single detailed image. This is important, for example, in medicine, where imaging techniques are used to visualise different aspects of the human body. For example, combining a CT scan and an MRI scan of the brain makes both the brain tissue and the bones visible.

For further information please contact Dr Gemma Piella (Signals and Images, CWI and now working at the Telecommunications Engineering School, Polytechnical University of Catalonia, Spain), tel. +34 (0)93 4017758, e-mail: gemma.piella@cwi.nl or her assistant supervisor Dr H.J.M.A. Heijmans, tel. +31 (0)20 5924057, e-mail: Henk.Heijmans@cwi.nl. The doctoral thesis was defended on 30 October 2003 at the Universiteit van Amsterdam. Dr Piella’s supervisor was Prof. P. W. Hemker.

Lydie van der Meer | NWO
Further information:
http://www.nwo.nl

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>