Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vital sign device improves resuscitation monitoring

10.11.2003


American Heart Association meeting report



A small device can give doctors the "big picture" of patients’ vital signs, researchers reported today during the Resuscitation Science Symposium at the American Heart Association’s Scientific Sessions 2003.

The device, called "Vital Dust," transmits patient data to a hospital or centralized location, allowing others to see the data and also gain a global view of all patients in the field who are being similarly monitored. It measures heart rate and the percent of oxygen saturation in the blood, an important indicator of a person’s cardiopulmonary status. A radio transmits the information to a wearable or handheld computer, where it is displayed for a medical team.


"If there is a mass casualty event, having this information on all the victims will allow the emergency medical technicians to triage right then and there, giving the sickest people priority. In single-person casualties, we’ll know right away if the patient has a sudden change in status and needs immediate attention," said Matt Welsh, Ph.D., assistant professor of computer science at Harvard University, one of Vital Dust’s developers and lead author of the study.

"This advance may lead to a more rapid triaging system," said Steve Moulton, M.D., one of the researchers who tested the device.

Vital Dust consists of a small, low-power computer connected to a sensor that fits over the patient’s fingertip. It is about six centimeters by three centimeters, or the size of a pack of chewing gum. Vital Dust runs on two AA batteries and includes an embedded microprocessor, memory, and a wireless communication interface.

Another unique feature of Vital Dust is its ability to store the pre-hospital electronic medical record together with a record of the patient’s vital signs.

"This form of data management enables a copy of the pre-hospital record to travel with the patient, giving hospital-based personnel the ability to review what was done in the field and determine how those maneuvers may have influenced the resuscitation process," said Moulton.

Moulton and his study co-authors are integrating Vital Dust sensors with iRevive, a pre-hospital, mobile database, to automate the process of capturing patient information.

One of the unique features is that the radio can adjust the power for transmitting information, Welsh said.

"If a patient’s heart rate slows dangerously or his oxygen saturation level drops precipitously, the system will automatically adjust the transmission power so that a stronger signal is sent out and has a greater chance of being received by the paramedic," he said. "The radio would back off transmitting other patients’ data, thus giving a critical patient’s signal an even greater chance of going through." This is the first wireless network designed to give priority to victims that are in critical condition, Welsh said. "Continuous real-time monitoring of vital signs in the field should greatly improve the effectiveness of emergency medical care."


###
Co-authors are Dan Myung, A.B. and Mark Gaynor, Ph.D.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Information Technology:

nachricht Optical fiber transmits one terabit per second – Novel modulation approach
16.09.2016 | Technische Universität München

nachricht Researchers prototype system for reading closed books
09.09.2016 | Massachusetts Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

How to merge two black holes in a simple way

26.09.2016 | Physics and Astronomy

Australian technology installed on world’s largest single-dish radio telescope

26.09.2016 | Physics and Astronomy

New mechanisms uncovered explaining frost tolerance in plants

26.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>