Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved remote mapping of disaster zones

28.10.2003


Comparison of various types of remote sensing data over the Tsaoling landslide within 18 months of the September 1999 magnitude 7.6 Chi Chi earthquake in central Taiwan.

a) Surface classification map made from radar scattering mechanisms obtained through analysis of airborne L-band (0.25 m wavelength) Synthetic Aperture Radar (SAR) polarimetry (obtained September 27, 2000). Purple = bare surface, green = forest, black = other (including missing data).

b) Grayscale C-band (0.06 m wavelength) image of vertically-polarized backscatter SAR intensity (obtained September 27, 2000).

c) False-color image of Landsat 7 Thematic Mapper (TM) data (February 2001). Green areas are forested, the purple areas are the landslide source area and debris apron, dark areas in the lower half of image are lakes impounded by landslide. Vegetation regrowth is occurring on the debris apron 18 months after the landslide. Compare with radar classification map in a),

d) Indian Research Satellite visible band panchromatic data (October 31, 1999) obtained within six weeks of the landslide. The landslide is the light colored


Columbia researchers develop "fingerprinting" techniques for SAR mapping

Research by scientists at the Lamont-Doherty Earth Observatory at Columbia University shows that Synthetic Aperture Radar (SAR) polarimetry is a more superior technology for rapidly identifying disaster zones than the currently used optical remote sensing technologies, such as Landsat and SPOT. Their findings are published in the Journal of Geophysical Research, and coincide with an opportunity to outfit satellites scheduled for deployment in 2004 with SAR polarimetry instruments.

Rapidly assessing land damage and responding to natural disasters is key to saving lives. SAR mapping has a clear advantage over optical mapping-the results are not hindered by darkness, clouds, or the smoke and dust frequently associated with disaster zones. This new SAR research marks the initial step in developing radar-based maps of damaged landscapes that can be rapidly provided to rescue workers.



Kristina Czuchlewski and Jeffrey Weissel, Lamont-Doherty Earth Observatory at Columbia University, and Yunjin Kim, Jet Propulsion Laboratory at California Institute of Technology, have developed a classification system for turning the data acquired by SAR into detailed maps depicting landscape elements such as water, vegetation, rocks, and elevations on a per-pixel basis (i.e. for areas as small as 5 x 5 m).

Czuchlewski et al. evaluated the effectiveness of using SAR polarimetry by mapping the massive Tsaoling landslide that resulted from the 1999 earthquake (magnitude 7.6) in Taiwan, damaging highway transportation systems and isolating communities in the area. The Tsaoling landslide slid into the Chingshuichi Valley killing 34 people and requiring rapid construction of a new road to facilitate rescue efforts. Debris covered about 1.3 square miles of the Valley floor, damming the river and forming an artificial lake that had to be drained to avoid the possibility of dam failure during the monsoon rains.

"Our SAR polarimetry data was taken one year after the Tsaoling landslide occurred. When you compare this map to the one generated from the Landsat optical data just 5 months after ours, we find SAR polarimetry to be equally proficient, with the critical added advantage of not needing clear skies to get an image," said Kristina Czuchlewski, Doctoral Candidate, Department of Earth and Environmental Sciences, Columbia University.

The researchers currently utilize NASA’s AIRSAR DC-8 aircraft to collect SAR polarimetry data. Electromagnetic energy is transmitted from the air to the disaster zone and measures the electric field backscatter. This backscatter is then further processed to determine scattering mechanisms, or the "fingerprint," of the surface materials. The different types of scattering mechanisms are applied to the various elements of the terrain. For example, backscatter from bare, rough surfaces generally consists of a single "bounce" back toward the receiving antenna. In contrast, backscatter from leafy trees is diffuse, becoming more random as the radar wave interacts with the trunks, branches and leaves of the canopy. These fundamental properties of the surface can be easily extracted from fully-polarimetric SAR because this type of data records the amplitude and phase of the backscattered electric field, allowing us to measure the organized and random bounces occurring within each pixel. Optical imagery, on the other hand, detects these different surface cover types based on their electromagnetic signature at very short wavelengths. Instead of scattering, optical techniques measure reflectance, a property that is strongly disturbed by the atmosphere and dependent on the sun’s energy.

Lamont-Doherty Earth Observatory researchers are also conducting studies to apply SAR polarimetry mapping to other natural disaster sites, including those devastated by wildfires and lava flows.

"If carried aboard a fleet of robotic, unmanned aerial vehicles (UAVs) instead of on satellites, SAR polarimeters could be rapidly deployed in a cost effective way to disaster sites anywhere on the globe. We could take advantage of the long endurance of UAVs to monitor the development of emerging disasters such as floods, wildfires and volcanic eruptions. In this way, SAR-based disaster response technology could play a vital role in evacuating populations placed at risk by many different kinds of natural disasters," said Jeffrey Weissel, Doherty Senior Scholar and leader of the research team at Lamont-Doherty Earth Observatory.



The Tsaoling landslide research was supported by the National Aeronautics and Space Administration (NASA) Solid Earth & Natural Hazards program and an Earth System Science Fellowship award.

Lamont-Doherty Earth Observatory

The Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, is one of the world’s leading research centers examining the planet from its core to its atmosphere, across every continent and every ocean. From global climate change to earthquakes, volcanoes, environmental hazards and beyond, Observatory scientists provide the basic knowledge of Earth systems needed to inform the future health and habitability of our planet. For more information, visit www.ldeo.columbia.edu.

The Earth Institute

The Earth Institute at Columbia University is the world’s leading academic center for the integrated study of Earth, its environment, and society. The Earth Institute builds upon excellence in the core disciplines-earth sciences, biological sciences, engineering sciences, social sciences and health sciences-and stresses cross-disciplinary approaches to complex problems. Through its research training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor. For more information, visit www.earth.columbia.edu.

Mary Tobin | EurekAlert!
Further information:
http://www.ldeo.columbia.edu/
http://www.earth.columbia.edu

More articles from Information Technology:

nachricht The Flexible Grid Involves its Users
27.09.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Optical fiber transmits one terabit per second – Novel modulation approach
16.09.2016 | Technische Universität München

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>