Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD scientists explain and improve upon ’enigmatic’ probability formula

17.10.2003


Findings could have implications for speech recognition, machine learning, information retrieval



Scientists at the University of California, San Diego (UCSD) have developed new insight into a formula that helped British cryptanalysts crack the German Enigma code in World War II. Writing in the Oct. 17 edition of the journal Science, UCSD Jacobs School of Engineering professor Alon Orlitsky and graduate students Narayana P. Santhanam and Junan Zhang shed light on a lingering mathematical mystery and propose a new solution that could help improve automatic speech recognition, natural language processing, and other machine learning software.

In the article, Orlitsky and his colleagues unlock some of the secrets of the "Good-Turing estimator," a formula for estimating the probability of elements based on observed data. The formula is named after famed mathematicians I.J. Good and Alan Turing who, during WWII, were among a group of cryptanalysts charged with breaking the Enigma cipher -- the code used to encrypt German military communications. Working at Bletchley Park outside of London, their work has been credited by some with shortening the war by several years. (It also led to the development of the first modern computer, and was documented in a number of books and movies.)


The cryptanalysts were greatly aided by their possession of the Kengruppenbuch, the German cipher book that contained all possible secret keys to Enigma, and had been previously captured by British Intelligence. They documented the keys used by various U-boat commanders in previously decrypted messages and used this information to estimate the distributions of pages from which commanders picked their secret keys.

The prevailing technique at the time estimated the likelihood of each page by simply using its empirical frequency, the fraction of the time it had been picked in the past. But Good and Turing developed an unintuitive formula that bore little resemblance to conventional estimators. Surprisingly, this Good-Turing estimator outperformed the more intuitive approaches. Following the war, Good published the formula, mentioning that Turing had an "intuitive demonstration" for its power, but not describing what that demonstration entailed.

Since then, Good-Turing has been incorporated into a variety of applications such as information retrieval, spell-checking, and speech recognition software, where it is used to learn automatically the underlying structure of the language. But despite its usefulness, "its performance has remained something of an enigma itself," said Orlitsky, a professor in the Electrical and Computer Engineering department. While some partial explanations were given as to why Good-Turing may work well, no objective evaluation or results have been established for its optimality. Additionally, scientists observed that while it worked well under many circumstances, at times, its performance was lacking.

Now, Orlitsky, Santhanam, and Zhang believe they have unraveled some of the mystery surrounding Good-Turing, and constructed a new estimator that, unlike the historic formula, is reliable under all conditions. Motivated by information-theoretic and machine-learning considerations, they propose a natural measure for the performance of an estimator. Called attenuation, it evaluates the highest possible ratio between the probability assigned to each symbol in a sequence by any distribution, and the corresponding probability assigned by the estimator.

The UCSD researchers show that intuitive estimators, such as empirical frequency, can attenuate the probability of a symbol by an arbitrary amount. They also prove that Good-Turing performs well in general. While it can attenuate the probability of symbols by a factor of 1.39, it never attenuates by a factor of more than 2. Motivated by these observations, they derived an estimator whose attenuation is 1. This means that as the length of any sequence increases, the probability assigned to each symbol by the new estimator is as high as that assigned to it by any distribution.

"While there is a considerable amount of work to be done in simplifying and further improving the new estimator," concluded Orlitsky, "we hope that this new framework will eventually improve language modeling and hence lead to better speech recognition and data mining software."


* "Always Good-Turing: Asymptotically Optimal Probability Estimation," Science Magazine. http://www.sciencemag.org/

Media Contact: Doug Ramsey 858-822-5825 dramsey@ucsd.edu

Doug Ramsey | EurekAlert!
Further information:
http://www.ucsd.edu/

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>