Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CERN and Caltech join forces to smash Internet speed record

16.10.2003


CERN and California Institute of Technology (Caltech) will today receive an award for transferring over a Terabyte of data across 7,000 km of network at 5.44 gigabits per second (Gbps), smashing the old record of 2.38 Gbps achieved in February between CERN in Geneva and Sunnyvale in California by a Caltech, CERN, Los Alamos National Laboratory and Stanford Linear Accelerator Center team.



The international CERN-Caltech team set this new Internet2® Land Speed Record on 1 October 2003 by transferring 1.1 Terabytes of data in less than 30 minutes, corresponding to 38,420.54 petabit-metres per second. The average rate of 5.44 Gbps is more than 20,000 times faster than a typical home broadband connection and is equivalent to transferring a full CD in 1 second or a full length DVD movie in approximately 7 seconds. The award will be made to Olivier Martin of CERN and Harvey Newman of Caltech on the Lake Geneva Region Stand at the ITU Telecom World event in Geneva live from the Internet2 conference in Indianapolis at 17:30CET on Thursday 16 October.

"This new record marks another major milestone towards our final goal of abolishing distances and, in so doing, to enable more efficient worldwide scientific collaboration," said Martin, Head of External Networking at CERN and Manager of the European Union DataTAG project. "The record further proves that it is no longer a dream to replicate terabytes of data around the globe routinely and in a timely manner."


Newman, head of the Caltech team and chair of the ICFA Standing Committee on Inter-Regional Connectivity said: "This is a major milestone towards our goal of providing on-demand access to high energy physics data from around the world, using servers affordable to physicists from all regions. We have now reached the point where servers side by side have the same TCP performance as servers separated by 10,000 km. We also localized the current bottleneck to the I/O capability of the end-systems, and we expect that systems matching the full speed of a 10 Gbps link will be commonplace in the relatively near future."

"The team from Caltech and CERN have demonstrated an unprecedented level of high-performance networking, focused on supporting the requirements of leading-edge research," said Rich Carlson, Chair of the Internet2 land speed record (I2-LSR) judging panel. "This new I2-LSR mark shows that the capabilities of the underlying network infrastructure is able to accommodate even the most demanding needs of scientists around the world."

The new record was set through the efforts of the DataTAG and FAST projects, with major sponsorship from Cisco Systems, the European Union, HP, Intel, Juniper, Level 3 Communications, T-Systems, the US National Science Foundation, and the US Department of Energy. The extension of the 10Gbps DataTAG testbed to the Telecom World 2003 exhibition hall in Palexpo was made possible thanks to Cisco Systems, OPI (Geneva’s Office for the Promotion of Industries & Technologies), SIG (Services Industriels de Genève) and Telehouse Europe.

The rate of progress in long distance networking is such that even while preparing to accept the award, the CERN-Caltech team do not rule out breaking their own record during the course of the ITU Telecom World event.

Renilde Vanden Broeck | CERN
Further information:
http://info.web.cern.ch/info/Press/PressReleases/Releases2003/PR15.03ESpeedrecord.html

More articles from Information Technology:

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

nachricht PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems
11.12.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>