Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CERN and Caltech join forces to smash Internet speed record

16.10.2003


CERN and California Institute of Technology (Caltech) will today receive an award for transferring over a Terabyte of data across 7,000 km of network at 5.44 gigabits per second (Gbps), smashing the old record of 2.38 Gbps achieved in February between CERN in Geneva and Sunnyvale in California by a Caltech, CERN, Los Alamos National Laboratory and Stanford Linear Accelerator Center team.



The international CERN-Caltech team set this new Internet2® Land Speed Record on 1 October 2003 by transferring 1.1 Terabytes of data in less than 30 minutes, corresponding to 38,420.54 petabit-metres per second. The average rate of 5.44 Gbps is more than 20,000 times faster than a typical home broadband connection and is equivalent to transferring a full CD in 1 second or a full length DVD movie in approximately 7 seconds. The award will be made to Olivier Martin of CERN and Harvey Newman of Caltech on the Lake Geneva Region Stand at the ITU Telecom World event in Geneva live from the Internet2 conference in Indianapolis at 17:30CET on Thursday 16 October.

"This new record marks another major milestone towards our final goal of abolishing distances and, in so doing, to enable more efficient worldwide scientific collaboration," said Martin, Head of External Networking at CERN and Manager of the European Union DataTAG project. "The record further proves that it is no longer a dream to replicate terabytes of data around the globe routinely and in a timely manner."


Newman, head of the Caltech team and chair of the ICFA Standing Committee on Inter-Regional Connectivity said: "This is a major milestone towards our goal of providing on-demand access to high energy physics data from around the world, using servers affordable to physicists from all regions. We have now reached the point where servers side by side have the same TCP performance as servers separated by 10,000 km. We also localized the current bottleneck to the I/O capability of the end-systems, and we expect that systems matching the full speed of a 10 Gbps link will be commonplace in the relatively near future."

"The team from Caltech and CERN have demonstrated an unprecedented level of high-performance networking, focused on supporting the requirements of leading-edge research," said Rich Carlson, Chair of the Internet2 land speed record (I2-LSR) judging panel. "This new I2-LSR mark shows that the capabilities of the underlying network infrastructure is able to accommodate even the most demanding needs of scientists around the world."

The new record was set through the efforts of the DataTAG and FAST projects, with major sponsorship from Cisco Systems, the European Union, HP, Intel, Juniper, Level 3 Communications, T-Systems, the US National Science Foundation, and the US Department of Energy. The extension of the 10Gbps DataTAG testbed to the Telecom World 2003 exhibition hall in Palexpo was made possible thanks to Cisco Systems, OPI (Geneva’s Office for the Promotion of Industries & Technologies), SIG (Services Industriels de Genève) and Telehouse Europe.

The rate of progress in long distance networking is such that even while preparing to accept the award, the CERN-Caltech team do not rule out breaking their own record during the course of the ITU Telecom World event.

Renilde Vanden Broeck | CERN
Further information:
http://info.web.cern.ch/info/Press/PressReleases/Releases2003/PR15.03ESpeedrecord.html

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>