Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Train times? Yes, ask the machine

10.10.2003


Robots, machines that speak, answering machines that understand what we say ... will be soon a regular part of our daily life. Concretely the University of the Basque Country (EHU/UPV), together with the universities of Zaragoza and Valencia, is developing a system capable of recognising speech. The aim of the project is to develop a machine which responds automatically to the user who asks for information about trains and timetables.

The machine will be able to recognise the voice of the person asking for information, understand what is being said and then find the data and respond appropriately. In order to carry this function out, the machine will have to synthesise the voice.

Speech recognition



The first step the machine has to take is speech recognition. This function is being developed by the UPV/EHU research group which first has had to gather together all the phonemes in a language, in this case Spanish and to these are then added information about different manners of pronunciation and about coarticulation. It is well known that a phoneme is pronounced in a differentiated manner depending on what precedes or follows it – this is known as coarticulation. Moreover, the differences that can arise depending on context are also taken into account. Finally, with all this data, phoneme patterns are drawn up.

In a second phase, the pattern of the language is completed; the pattern which, in this context, is to be used. Given that the language register used in the questions is limited in breadth and depth – the language of aerospace, for example, is not going to be used - a person asking for information about trains uses a specific, limited register of words and expressions.

Subsequently, the phonemes and language patterns are unified and features of spontaneous speech are added; for example, the pauses that we make between one word and another, linguistic fillers or other sounds without meaning, repetitions and so on.

Once all these patterns are unified, the research team drew up an information programme which can carry out a statistic analysis of those questions and the ways of effecting them as represented in samples and interprets what the end-user is saying in each case. Thus, it can be said that understanding speech is the first step.

Subsequently, the system developed by UPV/EHU is integrated with the rest of the units involved: that of conversation management, the one that seeks the date asked for, the unit that creates the response, that which synthesises the voice and, finally, the unit that transmits the information. Moreover, these units are not located in one, single site but are spread out in Zaragoza, Valencia and Leioa (the Bilbao campus of the Basque University) and, thus, large amounts of information are sent in real time.

Because of this the system has to be secure and, moreover, having the units physically separated confers another advantage on the system: it is modular. So, if one of the units fails, it is only a matter of fixing or changing that unit.

Contact :
Garazi Andonegi
ELHUYAR Fundazioa
garazi@elhuyar.com
(+34) 943363040

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=336&hizk=I
http://www.ehu.es

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>