Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Train times? Yes, ask the machine


Robots, machines that speak, answering machines that understand what we say ... will be soon a regular part of our daily life. Concretely the University of the Basque Country (EHU/UPV), together with the universities of Zaragoza and Valencia, is developing a system capable of recognising speech. The aim of the project is to develop a machine which responds automatically to the user who asks for information about trains and timetables.

The machine will be able to recognise the voice of the person asking for information, understand what is being said and then find the data and respond appropriately. In order to carry this function out, the machine will have to synthesise the voice.

Speech recognition

The first step the machine has to take is speech recognition. This function is being developed by the UPV/EHU research group which first has had to gather together all the phonemes in a language, in this case Spanish and to these are then added information about different manners of pronunciation and about coarticulation. It is well known that a phoneme is pronounced in a differentiated manner depending on what precedes or follows it – this is known as coarticulation. Moreover, the differences that can arise depending on context are also taken into account. Finally, with all this data, phoneme patterns are drawn up.

In a second phase, the pattern of the language is completed; the pattern which, in this context, is to be used. Given that the language register used in the questions is limited in breadth and depth – the language of aerospace, for example, is not going to be used - a person asking for information about trains uses a specific, limited register of words and expressions.

Subsequently, the phonemes and language patterns are unified and features of spontaneous speech are added; for example, the pauses that we make between one word and another, linguistic fillers or other sounds without meaning, repetitions and so on.

Once all these patterns are unified, the research team drew up an information programme which can carry out a statistic analysis of those questions and the ways of effecting them as represented in samples and interprets what the end-user is saying in each case. Thus, it can be said that understanding speech is the first step.

Subsequently, the system developed by UPV/EHU is integrated with the rest of the units involved: that of conversation management, the one that seeks the date asked for, the unit that creates the response, that which synthesises the voice and, finally, the unit that transmits the information. Moreover, these units are not located in one, single site but are spread out in Zaragoza, Valencia and Leioa (the Bilbao campus of the Basque University) and, thus, large amounts of information are sent in real time.

Because of this the system has to be secure and, moreover, having the units physically separated confers another advantage on the system: it is modular. So, if one of the units fails, it is only a matter of fixing or changing that unit.

Contact :
Garazi Andonegi
ELHUYAR Fundazioa
(+34) 943363040

Garazi Andonegi | Basque research
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>