Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue researchers stretch DNA on chip, lay track for future computers

09.10.2003


Physics doctoral student Dorjderem Nyamjav, left, and Albena Ivanisevic, an assistant professor of biomedical engineering at Purdue University, review an image taken with an atomic force microscope. The researchers have developed a method for precisely placing strands of DNA on a silicon chip and then stretching out the strands so that their encoded information might be clearly read, two steps critical to possibly using DNA for future electronic devices and computers. (Purdue News Service photo/David Umberger


This diagram depicts the process of depositing DNA onto a chip containing lines of a polymer that has the opposite charge as DNA, causing the genetic material to be attracted automatically to the polymer. The researchers then stretched the DNA along the lines of polymer, uncoiling the genetic material so that its coded information might be read clearly. Inset images taken with an atomic force microscope show the lines and the DNA molecules. The work was done by Albena Ivanisevic, an Purdue University assistant professor of biomedical engineering, and physics doctoral student Dorjderem Nyamjav. Results are being published in the journal Advanced Materials. (Purdue University Department of Biomedical Engineering/Albena Ivanisevic)


Researchers at Purdue University are making it easier to read life’s genetic blueprint.

They have precisely placed strands of DNA on a silicon chip and then stretched out the strands so that their encoded information might be read more clearly, two steps critical to possibly using DNA for future electronic devices and computers.

Findings about the research are detailed in a paper posted online this month and will appear in an upcoming issue of the journal Advanced Materials. The paper was written by Albena Ivanisevic, an assistant professor of biomedical engineering at Purdue, and physics graduate student Dorjderem Nyamjav.



Ivanisevic and Nyamjav created templates containing charged lines of commercially available polymer. The positively charged polymer has the opposite charge as DNA, so when the genetic material is dropped onto the chip, it is attracted to the lines automatically. Then the researchers used a syringe to drag the DNA, uncoiling the strands along the template surface.

"The charged structures enable us to direct biological molecules in a certain location," Ivanisevic said.

Although other researchers have deposited DNA onto similar templates, Ivanisevic is the first to demonstrate how to also stretch strands of DNA in specific locations on such templates, which contain features so small they are measured in nanometers. This step could lead to the ability to stretch DNA molecules in specific locations on electronic chips, which is critical in harnessing the storage capacity of DNA for future computers.

"We don’t want to have DNA coiled on the surface," Ivanisevic said. "We want to be able to extend it and stretch it so that you can read what’s on the strand. You can think about a variety of DNA computing strategies. But you have to have the strand extended, and you have to have the ability to place it in a specific location."

Researchers also would like to be able to place DNA strands directly between two electrodes to perform consistent, precise measurements and determine certain electronic characteristics of genetic material.

"If you can actually demonstrate that you can do that, then you can think about making real molecular devices where DNA is used as a construction material," Ivanisevic said. "At this point, however, this is certainly a very basic nanofabrication problem."

Theoretically, future computers might tap the vast storage capacity that enables DNA to hold the complex blueprints of living organisms. These new computers would be based on DNA’s four-letter code instead of a computer’s customary two digits and would offer advantages in speed, memory capacity and energy efficiency over conventional electronics for solving certain types of complex problems.

The researchers used an instrument called an atomic force microscope and a device called a cantilever to lay down the lines of polymer in a process called dip-pen nanolithography. Each of the lines of polymer is about as wide as 100 nanometers, and each centimeter-square chip contains numerous templates.

"Nano" is a prefix meaning one-billionth, so a nanometer is one-billionth of a meter, or roughly the length of 10 hydrogen atoms strung together. A single DNA molecule is about 2 nanometers wide.

The same technique can be used to precisely place a variety of biological molecules, including proteins and viruses, onto such templates. It is not necessary to dry out or stain the molecules, meaning they can be kept in their natural state and still function as they would in living organisms.

Because the polymer is commercially available, the procedure can be readily studied by researchers and industry.

Ivanisevic is associated with two centers in Purdue’s Discovery Park: the Birck Nanotechnology Center and Bindley Bioscience Center, which funded the research.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: Albena Ivanisevic, (765) 496-3676, albena@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/031007.Ivanisevic.DNA.html
http://www.purdue.edu/

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>