Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue researchers stretch DNA on chip, lay track for future computers

09.10.2003


Physics doctoral student Dorjderem Nyamjav, left, and Albena Ivanisevic, an assistant professor of biomedical engineering at Purdue University, review an image taken with an atomic force microscope. The researchers have developed a method for precisely placing strands of DNA on a silicon chip and then stretching out the strands so that their encoded information might be clearly read, two steps critical to possibly using DNA for future electronic devices and computers. (Purdue News Service photo/David Umberger


This diagram depicts the process of depositing DNA onto a chip containing lines of a polymer that has the opposite charge as DNA, causing the genetic material to be attracted automatically to the polymer. The researchers then stretched the DNA along the lines of polymer, uncoiling the genetic material so that its coded information might be read clearly. Inset images taken with an atomic force microscope show the lines and the DNA molecules. The work was done by Albena Ivanisevic, an Purdue University assistant professor of biomedical engineering, and physics doctoral student Dorjderem Nyamjav. Results are being published in the journal Advanced Materials. (Purdue University Department of Biomedical Engineering/Albena Ivanisevic)


Researchers at Purdue University are making it easier to read life’s genetic blueprint.

They have precisely placed strands of DNA on a silicon chip and then stretched out the strands so that their encoded information might be read more clearly, two steps critical to possibly using DNA for future electronic devices and computers.

Findings about the research are detailed in a paper posted online this month and will appear in an upcoming issue of the journal Advanced Materials. The paper was written by Albena Ivanisevic, an assistant professor of biomedical engineering at Purdue, and physics graduate student Dorjderem Nyamjav.



Ivanisevic and Nyamjav created templates containing charged lines of commercially available polymer. The positively charged polymer has the opposite charge as DNA, so when the genetic material is dropped onto the chip, it is attracted to the lines automatically. Then the researchers used a syringe to drag the DNA, uncoiling the strands along the template surface.

"The charged structures enable us to direct biological molecules in a certain location," Ivanisevic said.

Although other researchers have deposited DNA onto similar templates, Ivanisevic is the first to demonstrate how to also stretch strands of DNA in specific locations on such templates, which contain features so small they are measured in nanometers. This step could lead to the ability to stretch DNA molecules in specific locations on electronic chips, which is critical in harnessing the storage capacity of DNA for future computers.

"We don’t want to have DNA coiled on the surface," Ivanisevic said. "We want to be able to extend it and stretch it so that you can read what’s on the strand. You can think about a variety of DNA computing strategies. But you have to have the strand extended, and you have to have the ability to place it in a specific location."

Researchers also would like to be able to place DNA strands directly between two electrodes to perform consistent, precise measurements and determine certain electronic characteristics of genetic material.

"If you can actually demonstrate that you can do that, then you can think about making real molecular devices where DNA is used as a construction material," Ivanisevic said. "At this point, however, this is certainly a very basic nanofabrication problem."

Theoretically, future computers might tap the vast storage capacity that enables DNA to hold the complex blueprints of living organisms. These new computers would be based on DNA’s four-letter code instead of a computer’s customary two digits and would offer advantages in speed, memory capacity and energy efficiency over conventional electronics for solving certain types of complex problems.

The researchers used an instrument called an atomic force microscope and a device called a cantilever to lay down the lines of polymer in a process called dip-pen nanolithography. Each of the lines of polymer is about as wide as 100 nanometers, and each centimeter-square chip contains numerous templates.

"Nano" is a prefix meaning one-billionth, so a nanometer is one-billionth of a meter, or roughly the length of 10 hydrogen atoms strung together. A single DNA molecule is about 2 nanometers wide.

The same technique can be used to precisely place a variety of biological molecules, including proteins and viruses, onto such templates. It is not necessary to dry out or stain the molecules, meaning they can be kept in their natural state and still function as they would in living organisms.

Because the polymer is commercially available, the procedure can be readily studied by researchers and industry.

Ivanisevic is associated with two centers in Purdue’s Discovery Park: the Birck Nanotechnology Center and Bindley Bioscience Center, which funded the research.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: Albena Ivanisevic, (765) 496-3676, albena@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/031007.Ivanisevic.DNA.html
http://www.purdue.edu/

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>