Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dual microscopes illuminate electronic switching speeds

29.09.2003


Designers of semiconductor devices are like downhill skiers - they thrive on speed. And achieving speed in the semiconductor business is all about the stuff you start with. While silicon is still the mainstay of the industry, circuit designers also would like to put materials like gallium nitride and silicon carbide into wider use. Such advanced semiconductor materials can operate at higher voltages and provide faster switching speeds, an important characteristic in determining how fast a semiconductor circuit can process information.



Reporting in the Sept. 22 issue of Applied Physics Letters, a National Institute of Standards and Technology (NIST) researcher and a Korean guest researcher describe a new method for scanning semiconductors for defects that may help accelerate the market for these newer materials. The duo combined an atomic force microscope with a scanning capacitance microscope and then added custom software and a simple on/off switch for the AFM’s positioning laser.

The result is an instrument that can measure how fast a material generates electrical charges and then map those speeds in sections (at least for gallium nitride) that are only about 100 nanometers square. Current methods for measuring switching speed (carrier lifetime) produce only bulk averages.


According to NIST co-developer Joseph Kopanski, the system allows quick scanning of semiconductor wafers for defects that otherwise may not be found until an expensive device has already been built on the material. Most defects in semiconductors (i.e. sections with missing atoms) are presumed to slow down the speed that charges move through a material. Kopanski says further research using the new technique should determine if this assumption is correct. A patent application is pending on the technique.

Phil Bulman | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Information Technology:

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

nachricht World first: 'Storing lightning inside thunder'
18.09.2017 | University of Sydney

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>