Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dual microscopes illuminate electronic switching speeds

29.09.2003


Designers of semiconductor devices are like downhill skiers - they thrive on speed. And achieving speed in the semiconductor business is all about the stuff you start with. While silicon is still the mainstay of the industry, circuit designers also would like to put materials like gallium nitride and silicon carbide into wider use. Such advanced semiconductor materials can operate at higher voltages and provide faster switching speeds, an important characteristic in determining how fast a semiconductor circuit can process information.



Reporting in the Sept. 22 issue of Applied Physics Letters, a National Institute of Standards and Technology (NIST) researcher and a Korean guest researcher describe a new method for scanning semiconductors for defects that may help accelerate the market for these newer materials. The duo combined an atomic force microscope with a scanning capacitance microscope and then added custom software and a simple on/off switch for the AFM’s positioning laser.

The result is an instrument that can measure how fast a material generates electrical charges and then map those speeds in sections (at least for gallium nitride) that are only about 100 nanometers square. Current methods for measuring switching speed (carrier lifetime) produce only bulk averages.


According to NIST co-developer Joseph Kopanski, the system allows quick scanning of semiconductor wafers for defects that otherwise may not be found until an expensive device has already been built on the material. Most defects in semiconductors (i.e. sections with missing atoms) are presumed to slow down the speed that charges move through a material. Kopanski says further research using the new technique should determine if this assumption is correct. A patent application is pending on the technique.

Phil Bulman | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>