Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Real-time ’movies’ will predict wildfire behavior for one hour

26.09.2003


Collaborative project promises new approach to battling fires



Someday fire fighters will be able to manage wildfires by computer.

Rochester Institute of Technology recently won a $300,000 grant from the National Science Foundation to translate remote-sensing data about wildfires into real-time "mini-movies" that fire managers can download on laptop computers at the scene of a blaze. The model and visualization will predict the fire’s behavior for the following hour.


This four-year collaborative project also involves researchers from the National Center for Atmospheric Research (NCAR) in Boulder, Texas A&M, University of Colorado at Denver and University of Kentucky.

Leading RIT’s research effort is Anthony Vodacek, assistant professor in the Chester F. Carlson Center for Imaging Science. Vodacek also heads RIT’s Forest Fire Imaging Experimental System (FIRES), a precursor to the Wildfire Airborne Sensor Program (WASP). Other team members will include CIS senior research scientist Robert Kremens and postdoctoral fellow Ambrose Ononye.

FIRES and WASP research were made possible through the efforts of Congressman Jim Walsh, chair of the House VA/HUD Independent Agencies Appropriations Subcommittee, who has provided nearly $8 million through the NASA budget over four years to support wild fire-detection research at RIT.

The RIT team has two roles in its new project:

-- To collect real-time data about wildfires using the airborne sensor, WASP, and ground-based sensors; and

-- To use computer animation to visualize predicted fire behavior

In between those two steps, is a unique fire behavior model that forms the core of the project. Information collected by the RIT team will be fed into the model created by Vodacek’s colleague Janice Coen at NCAR. Based on fire-behavior models in use by the U.S. Forest Service, Coen’s model will combine RIT’s data with the influence of weather conditions. The model will output a 3-dimensional "movie" about the fire sophisticated enough to predict dangerous fire behavior, such as leaping flames.

Other members of the collaborative team will be in charge of feeding a wide variety of raw data to the model for rapid retrieval at the fire scene.

In order for this relay of information to be successful, Vodacek will need to make the scientific data meaningful to the fire fighters. "Coen’s model can track smoke and hot gases in the atmosphere," he says. "We need to translate that into what a fire looks like by using computer animation. It fits very well into what we’ve been doing in the FIRES project."

Vodacek’s team will create synthetic scenes of fires to visualize live blazes based on Coen’s model, which will tell them where flames will be in any particular situation.

"We would translate it into what a person would see," Vodacek says. "Essentially, a little movie would be generated. In the end, the goal is to make it look real to the fire manager."

The process will work like this: overhead and ground sensors will collect real-time data about a fire to feed into the model. The data will be transferred to a super computer where the model is run and then sent back to the field. (The fire could be in Montana and the super computer in Georgia, Vodacek notes.) The link is the laptop that the fire manager will use to watch how the fire is predicted to behave for about an hour.

"The idea is that all of this will occur as close as possible to real time," Vodacek says. "By the time it takes to collect the data, run it through the model and send it back to the field, it may be 15 minutes old. But, still, that gives you a 45-minute outlook, potentially."

The overall goal of the project is to demonstrate the entire system at the end of four years.


To talk to Anthony Vodacek about remote sensing and visualizing wildfires, contact Susan Gawlowicz at 585-475-5061 or smguns@rit.edu

Internationally recognized as a leader in computing, imaging, technology, fine and applied arts, and education of the deaf, Rochester Institute of Technology enrolls 15,500 students in more than 340 undergraduate and graduate programs. Its cooperative education program is one of the oldest and largest in the nation.

For the past decade, U.S. News and World Report has ranked RIT as one of the nation’s leading comprehensive universities. RIT is also included in Fisk’s Guide to America’s Best Colleges, as well as Barron’s Best Buys in Education.

Susan Gawlowicz | EurekAlert!
Further information:
http://www.rit.edu/

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>