Breakthrough for the computer of tomorrow?

For the first time a material now exists that is not only a semiconductor but also exhibits exploitable magnetic properties at room temperature. Researchers at the Royal Institute of Technology (KTH) in Stockholm, Sweden, have taken the lead in an international race to find the technology of tomorrow.

Today’s computers process information using semiconductor chips and store it on magnetic discs. Tomorrow’s technology may mean that these parts merge into a single chip. This is based on the so-called ‘spin’ of electrons. Electron spin generates magnetic fields. Magnetism in iron and other magnetic materials comes from this phenomenon. This spin has a specific direction, and this direction can be exploited as a carrier of information, as ones and zeroes, when you have the equipment to influence and read the spin direction. This technology is believed to be capable of replacing a great deal of today’s electronics, and it is therefore called ‘spintronics.’

Researchers from around the world, both in industry and at universities, have been seeking to create the ‘spin transistor’ for a few years now. It has been created in labs, but only at extremely low temperatures. As recently as last winter, the temperature -100 C was hailed as a milestone in this research (Scientific American, March 2003).

Now a team consisting of experimentalists from the Royal Institute of Technology (KTH) in Stockholm, with the aid of theoreticians from KTH and Uppsala University, have found a substance, zinc oxide with a manganese additive, that makes the spin transistor possible at room temperature, and therefore feasible for mass production.

“Our discovery is not a milestone, it’s a breakthrough,” says Professor Venkat Rao at KTH Materials Science.

What does this mean? Can controlling a spinning electron really change so much? Yes, whoever harnesses the infinitesimal controls the ballgame. It is impossible to predict precisely what practical consequences this will have in the form of new technology, but if the material withstands the test of production, there is tremendous potential for producing much smaller and faster computers, perhaps even so-called quantum computers.

The finding is a door-opener. There are myriad paths to follow. The article is being published and is one of the cover headlines in the October issue of Nature Materials.

Media Contact

Jacob Seth Fransson alfa

More Information:

http://www.kth.se

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors