Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop a ’smart’ payment card that can easily be programmed to restrict spending

24.09.2003


Researchers at the University of Pennsylvania have one-upped "smart" credit cards with embedded microchips: They’ve developed a technique that lets ordinary card users program in their own spending parameters.



Penn computer scientist Carl A. Gunter presented the work at the recent European Conference on Object-Oriented Programming in Darmstadt, Germany. The technology could let employers better manage spending on corporate cards or permit parents to get teenage children emergency credit cards usable only at locations like car repair shops, hotels or pay phones.

"Banks and other card issuers have long been able to set general parameters, such as credit limits," said Gunter, professor of computer and information science at Penn, "but most have little interest in setting finer limits because the process is cumbersome and expensive to manage. We’d like to open up these kinds of additional programming capabilities to ordinary people who’d like to take responsibility for restricting use of a card in some specific way. Users would decide what limits are needed."


Programmable credit cards could let cardholders limit expenditures, for instance, to $100 a day or to spending only on certain days or at certain establishments, Gunter said. The programmable card’s added layer of security could also help cut fraudulent online use of credit cards, which has grown into a significant problem for consumers and industry. The same technology could be used in cell phones that use a smart card, Gunter said, to provide owners with ways to regulate the use of the phone by others.

The programmable card developed by Gunter and his colleagues unites an array of existing technologies, including the microchips first built into credit cards more than 30 years ago. An on-card verification system prevents unauthorized users from tampering with limits programmed in by the card’s rightful owner. A commercial card-reader already on the market plugs into a computer dock, letting users link card and computer to create personalized restrictions using interfaces created by Gunter’s group.

Gunter’s work with programmable credit cards is the latest development in the movement toward open application programming interfaces, which allow users to tinker with the miniature computers embedded in devices from cars to cell phones to personal digital assistants. For example, many cell phones now have open APIs that let users import different ring tones.

"Open APIs are generally a plus for consumers," Gunter said, "because they build in flexibility and allow for a richer array of uses."

Gunter is joined in this research, funded by the National Science Foundation and Army Research Office, by Rajeev Alur, Penn professor of computer and information science, and Alwyn Goodloe, Michael McDougall, Jason Simas and Watee Arjsamat, all of whom are Penn students or staff.

Penn is seeking corporate partners and investors to commercialize this technology. Additional information is available by contacting Jennifer Choy in Penn’s Center for Technology Transfer at 215-898-9273.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>