Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop a ’smart’ payment card that can easily be programmed to restrict spending

24.09.2003


Researchers at the University of Pennsylvania have one-upped "smart" credit cards with embedded microchips: They’ve developed a technique that lets ordinary card users program in their own spending parameters.



Penn computer scientist Carl A. Gunter presented the work at the recent European Conference on Object-Oriented Programming in Darmstadt, Germany. The technology could let employers better manage spending on corporate cards or permit parents to get teenage children emergency credit cards usable only at locations like car repair shops, hotels or pay phones.

"Banks and other card issuers have long been able to set general parameters, such as credit limits," said Gunter, professor of computer and information science at Penn, "but most have little interest in setting finer limits because the process is cumbersome and expensive to manage. We’d like to open up these kinds of additional programming capabilities to ordinary people who’d like to take responsibility for restricting use of a card in some specific way. Users would decide what limits are needed."


Programmable credit cards could let cardholders limit expenditures, for instance, to $100 a day or to spending only on certain days or at certain establishments, Gunter said. The programmable card’s added layer of security could also help cut fraudulent online use of credit cards, which has grown into a significant problem for consumers and industry. The same technology could be used in cell phones that use a smart card, Gunter said, to provide owners with ways to regulate the use of the phone by others.

The programmable card developed by Gunter and his colleagues unites an array of existing technologies, including the microchips first built into credit cards more than 30 years ago. An on-card verification system prevents unauthorized users from tampering with limits programmed in by the card’s rightful owner. A commercial card-reader already on the market plugs into a computer dock, letting users link card and computer to create personalized restrictions using interfaces created by Gunter’s group.

Gunter’s work with programmable credit cards is the latest development in the movement toward open application programming interfaces, which allow users to tinker with the miniature computers embedded in devices from cars to cell phones to personal digital assistants. For example, many cell phones now have open APIs that let users import different ring tones.

"Open APIs are generally a plus for consumers," Gunter said, "because they build in flexibility and allow for a richer array of uses."

Gunter is joined in this research, funded by the National Science Foundation and Army Research Office, by Rajeev Alur, Penn professor of computer and information science, and Alwyn Goodloe, Michael McDougall, Jason Simas and Watee Arjsamat, all of whom are Penn students or staff.

Penn is seeking corporate partners and investors to commercialize this technology. Additional information is available by contacting Jennifer Choy in Penn’s Center for Technology Transfer at 215-898-9273.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>