Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop a ’smart’ payment card that can easily be programmed to restrict spending

24.09.2003


Researchers at the University of Pennsylvania have one-upped "smart" credit cards with embedded microchips: They’ve developed a technique that lets ordinary card users program in their own spending parameters.



Penn computer scientist Carl A. Gunter presented the work at the recent European Conference on Object-Oriented Programming in Darmstadt, Germany. The technology could let employers better manage spending on corporate cards or permit parents to get teenage children emergency credit cards usable only at locations like car repair shops, hotels or pay phones.

"Banks and other card issuers have long been able to set general parameters, such as credit limits," said Gunter, professor of computer and information science at Penn, "but most have little interest in setting finer limits because the process is cumbersome and expensive to manage. We’d like to open up these kinds of additional programming capabilities to ordinary people who’d like to take responsibility for restricting use of a card in some specific way. Users would decide what limits are needed."


Programmable credit cards could let cardholders limit expenditures, for instance, to $100 a day or to spending only on certain days or at certain establishments, Gunter said. The programmable card’s added layer of security could also help cut fraudulent online use of credit cards, which has grown into a significant problem for consumers and industry. The same technology could be used in cell phones that use a smart card, Gunter said, to provide owners with ways to regulate the use of the phone by others.

The programmable card developed by Gunter and his colleagues unites an array of existing technologies, including the microchips first built into credit cards more than 30 years ago. An on-card verification system prevents unauthorized users from tampering with limits programmed in by the card’s rightful owner. A commercial card-reader already on the market plugs into a computer dock, letting users link card and computer to create personalized restrictions using interfaces created by Gunter’s group.

Gunter’s work with programmable credit cards is the latest development in the movement toward open application programming interfaces, which allow users to tinker with the miniature computers embedded in devices from cars to cell phones to personal digital assistants. For example, many cell phones now have open APIs that let users import different ring tones.

"Open APIs are generally a plus for consumers," Gunter said, "because they build in flexibility and allow for a richer array of uses."

Gunter is joined in this research, funded by the National Science Foundation and Army Research Office, by Rajeev Alur, Penn professor of computer and information science, and Alwyn Goodloe, Michael McDougall, Jason Simas and Watee Arjsamat, all of whom are Penn students or staff.

Penn is seeking corporate partners and investors to commercialize this technology. Additional information is available by contacting Jennifer Choy in Penn’s Center for Technology Transfer at 215-898-9273.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>