Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart maths for greener mill design

19.09.2003


A webGF-Mill image showing the motion of particles adjacent to a lifter bar. Particle colouring indicates particle diameter; red indicating large particles and blue indicating small particles


A webGF-Mill image showing the motion of rocks and steel balls in a section along the length of a grinding mill. Particle colouring indicates particle speed with red being the fastest moving particles and blue the slowest or stationary particles.


CSIRO has developed an Internet-based simulation tool that predicts the motion of particles inside grinding mills, providing insight into the way mills work and enabling huge energy savings from smarter, more energy efficient design.

webGF-Mill assesses the design and function of the grinding mills used at mines to crush ore.

"Improving mill design is important because of the amount of energy that mills use," says CSIRO mathematician Dave Morton. "Typically, grinding mills are very inefficient. An average mill around 10 metres in diameter consumes roughly the energy required to supply 10 000 average Australian households. Unfortunately, only 5% of this energy is consumed by the processes that actually break the rocks inside the mill."



"As well as decreasing costs for mining companies, improving mill performance has the potential to significantly reduce global consumption of fossil fuels and thus provide important environmental benefits," he says.

webGF-Mill, uses sophisticated simulation techniques to predict the collective motion of large numbers of particles. These methods, developed by CSIRO mathematicians, provide tools for studying the flow of granular materials such as minerals, powders and cereals. Understanding the way that granules move helps companies develop efficient methods for production, processing and transport of these materials.

webGF-Mill is used to study three types of mills, the larger SAG (semi-autogenous grinding) and AG (autogenous grinding) mills, and the smaller ball mills.

As Australia is one of the world’s largest mineral producers, many mills are used at mine sites throughout Australia.

Typically, material is dug out of a mine as rocks up to 2m in size. Crushers break the rocks down to particles of around 200-300mm, which are then ground further in a SAG or AG mill. Oversized particles are then sent to ball mills for further crushing. Crushed material accepted from SAG, AG and ball mills is sent to flotation plants where valuable minerals are separated from the dirt for further processing.

webGF-Mill can be used to simulate a variety of different mill sizes, lifter geometries, ball and rock distributions, and fill levels.

For further information visit www.cmis.csiro.au/webgf

More information:

Dave Morton, mobile: 0407 257 281
Email: dave.morton@csiro.au
CSIRO Mathematical and Information Sciences
Media assistance :
Andrea Mettenmeyer, mobile: 0415 199 434
Email: andrea.mettenmeyer@csiro.au
CSIRO Mathematical and Information Sciences

Rosie Schmedding | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=PrGFmill

More articles from Information Technology:

nachricht New 3-D display takes the eye fatigue out of virtual reality
22.06.2017 | The Optical Society

nachricht Modeling the brain with 'Lego bricks'
19.06.2017 | University of Luxembourg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>