Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart maths for greener mill design

19.09.2003


A webGF-Mill image showing the motion of particles adjacent to a lifter bar. Particle colouring indicates particle diameter; red indicating large particles and blue indicating small particles


A webGF-Mill image showing the motion of rocks and steel balls in a section along the length of a grinding mill. Particle colouring indicates particle speed with red being the fastest moving particles and blue the slowest or stationary particles.


CSIRO has developed an Internet-based simulation tool that predicts the motion of particles inside grinding mills, providing insight into the way mills work and enabling huge energy savings from smarter, more energy efficient design.

webGF-Mill assesses the design and function of the grinding mills used at mines to crush ore.

"Improving mill design is important because of the amount of energy that mills use," says CSIRO mathematician Dave Morton. "Typically, grinding mills are very inefficient. An average mill around 10 metres in diameter consumes roughly the energy required to supply 10 000 average Australian households. Unfortunately, only 5% of this energy is consumed by the processes that actually break the rocks inside the mill."



"As well as decreasing costs for mining companies, improving mill performance has the potential to significantly reduce global consumption of fossil fuels and thus provide important environmental benefits," he says.

webGF-Mill, uses sophisticated simulation techniques to predict the collective motion of large numbers of particles. These methods, developed by CSIRO mathematicians, provide tools for studying the flow of granular materials such as minerals, powders and cereals. Understanding the way that granules move helps companies develop efficient methods for production, processing and transport of these materials.

webGF-Mill is used to study three types of mills, the larger SAG (semi-autogenous grinding) and AG (autogenous grinding) mills, and the smaller ball mills.

As Australia is one of the world’s largest mineral producers, many mills are used at mine sites throughout Australia.

Typically, material is dug out of a mine as rocks up to 2m in size. Crushers break the rocks down to particles of around 200-300mm, which are then ground further in a SAG or AG mill. Oversized particles are then sent to ball mills for further crushing. Crushed material accepted from SAG, AG and ball mills is sent to flotation plants where valuable minerals are separated from the dirt for further processing.

webGF-Mill can be used to simulate a variety of different mill sizes, lifter geometries, ball and rock distributions, and fill levels.

For further information visit www.cmis.csiro.au/webgf

More information:

Dave Morton, mobile: 0407 257 281
Email: dave.morton@csiro.au
CSIRO Mathematical and Information Sciences
Media assistance :
Andrea Mettenmeyer, mobile: 0415 199 434
Email: andrea.mettenmeyer@csiro.au
CSIRO Mathematical and Information Sciences

Rosie Schmedding | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=PrGFmill

More articles from Information Technology:

nachricht The Flexible Grid Involves its Users
27.09.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Optical fiber transmits one terabit per second – Novel modulation approach
16.09.2016 | Technische Universität München

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>