Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Chemistry Software Automatically Generates Computer Code

09.09.2003


A new software tool promises to aid scientists whose research has forced them to lead double lives - as computer programmers.


Ponnuswamy Sadayappan



The tool, called the Tensor Contraction Engine (TCE), automatically generates the computer code that chemists, physicists, and materials scientists need to model the structure and interaction of complex molecules, saving them weeks or even months of work.

By making the computer code more efficient, the TCE could even reduce the amount of time required for these projects at national laboratories and supercomputer centers around the country.


“With this tool, scientists can focus on their research rather than writing and debugging software,” said Ponnuswamy Sadayappan, professor of computer and information science at Ohio State University. “They can focus on innovation.”

Sadayappan leads the consortium that introduced a prototype of the TCE Sept. 7 at the national meeting of the American Chemical Society in New York. Partners on the project include Louisiana State University, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and University of Waterloo.

Once the software is fully developed, it could impact two
of the broadest areas of research in the physical sciences. Both computational chemistry and computational physics concern the behavior of atoms and molecules on very large scales, and they encompass a diverse array of specialties, such as atmospheric chemistry, protein structure, materials science, and industrial chemical processing.

This research also consumes a great deal of supercomputer time around the country. In a recent study, Sadayappan and his colleagues reported that computational chemistry and materials science projects accounted for some 85 percent of computer usage at the Pacific Northwest National Laboratory, 30 percent at the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory, and 50 percent of one computer system at the San Diego Supercomputer Center.

The reason: the interactions of atoms and molecules are so complex that scientists model them using elaborate mathematical matrices, or tensors, containing tens of millions to billions of elements. The modeling process involves dozens to hundreds of manipulations called tensor contractions, which are extremely complex and hard to program efficiently.

The tedious job often falls to graduate students and post-doctoral researchers, who labor for months to write the code before scientists can begin to do any actual research.

Once fully developed, the TCE will perform the task in hours, generating an efficient parallel program that uses a minimum amount of computer memory and fast communication between parallel processors on a supercomputer, Sadayappan said.

Given a mathematical description of a problem in computational chemistry or physics, the TCE generates code in the FORTRAN computer language, which is the most common language used for this kind of research. Scientists then plug that code into their own software programs.

Sadayappan got the idea for the TCE while collaborating on a particularly arduous electronic structure theory project with John Wilkins, an Ohio Eminent Scholar and professor of physics at Ohio State.

“Some problems cropped up during the course of that work that made us realize the magnitude of the challenges involved, and by the time it was all over we had the idea for a way to make things easier,” Sadayappan said.

At an annual workshop hosted by Russell Pitzer, professor of chemistry at Ohio State, Sadayappan discovered that some chemists had been thinking along similar lines. He joined with Pitzer and Gerald Baumgartner, an assistant professor of computer and information science with expertise in programming language design, and other chemists and computer scientists to form the consortium.

Partners outside of Ohio State include Jagannathan Ramanujam at Louisiana State University, David Bernholdt and Robert Harrison at Oak Ridge National Laboratory, Marcel Nooijen at the University of Waterloo, and So Hirata at Pacific Northwest National Laboratory. Bernholdt gave the first of the consortium’s presentations on the TCE at the American Chemical Society meeting Sunday.

“The success of such an endeavor requires a team with expertise in several disciplines,” said Sadayappan, “and we are fortunate to have that -- with world renowned quantum chemists Nooijen and Harrison, Bernholdt’s expertise in developing software interfaces, Ramanujam’s expertise in compilers, and Hirata’s ability to bridge computer science and chemistry, as evidenced by his prototype TCE.”

Sadayappan also emphasized the work that many postdoctoral researchers and students have contributed to the project, both in developing the ideas and implementing the software, which now contains almost 50,000 lines of code.

Now is the time for potential users of the TCE to join with the consortium and help shape the system’s functionality, Sadayappan said. Interested scientists should contact him to attend future project meetings and participate in dialogs concerning new features.

Development of the Tensor Contraction Engine was funded by the National Science Foundation through its Information Technology Research program, with the intention that the TCE source code will be made available to researchers. The consortium members from the national laboratories have been funded by the Department of Energy.


Contact: Ponnuswamy Sadayappan, (614) 292-0053;
Sadayappan.1@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University
Further information:
http://www.osu.edu/researchnews/archive/tcengine1.htm
http://www.itr.nsf.gov/
http://www.energy.gov/engine/content.do

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>