Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Chemistry Software Automatically Generates Computer Code

09.09.2003


A new software tool promises to aid scientists whose research has forced them to lead double lives - as computer programmers.


Ponnuswamy Sadayappan



The tool, called the Tensor Contraction Engine (TCE), automatically generates the computer code that chemists, physicists, and materials scientists need to model the structure and interaction of complex molecules, saving them weeks or even months of work.

By making the computer code more efficient, the TCE could even reduce the amount of time required for these projects at national laboratories and supercomputer centers around the country.


“With this tool, scientists can focus on their research rather than writing and debugging software,” said Ponnuswamy Sadayappan, professor of computer and information science at Ohio State University. “They can focus on innovation.”

Sadayappan leads the consortium that introduced a prototype of the TCE Sept. 7 at the national meeting of the American Chemical Society in New York. Partners on the project include Louisiana State University, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and University of Waterloo.

Once the software is fully developed, it could impact two
of the broadest areas of research in the physical sciences. Both computational chemistry and computational physics concern the behavior of atoms and molecules on very large scales, and they encompass a diverse array of specialties, such as atmospheric chemistry, protein structure, materials science, and industrial chemical processing.

This research also consumes a great deal of supercomputer time around the country. In a recent study, Sadayappan and his colleagues reported that computational chemistry and materials science projects accounted for some 85 percent of computer usage at the Pacific Northwest National Laboratory, 30 percent at the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory, and 50 percent of one computer system at the San Diego Supercomputer Center.

The reason: the interactions of atoms and molecules are so complex that scientists model them using elaborate mathematical matrices, or tensors, containing tens of millions to billions of elements. The modeling process involves dozens to hundreds of manipulations called tensor contractions, which are extremely complex and hard to program efficiently.

The tedious job often falls to graduate students and post-doctoral researchers, who labor for months to write the code before scientists can begin to do any actual research.

Once fully developed, the TCE will perform the task in hours, generating an efficient parallel program that uses a minimum amount of computer memory and fast communication between parallel processors on a supercomputer, Sadayappan said.

Given a mathematical description of a problem in computational chemistry or physics, the TCE generates code in the FORTRAN computer language, which is the most common language used for this kind of research. Scientists then plug that code into their own software programs.

Sadayappan got the idea for the TCE while collaborating on a particularly arduous electronic structure theory project with John Wilkins, an Ohio Eminent Scholar and professor of physics at Ohio State.

“Some problems cropped up during the course of that work that made us realize the magnitude of the challenges involved, and by the time it was all over we had the idea for a way to make things easier,” Sadayappan said.

At an annual workshop hosted by Russell Pitzer, professor of chemistry at Ohio State, Sadayappan discovered that some chemists had been thinking along similar lines. He joined with Pitzer and Gerald Baumgartner, an assistant professor of computer and information science with expertise in programming language design, and other chemists and computer scientists to form the consortium.

Partners outside of Ohio State include Jagannathan Ramanujam at Louisiana State University, David Bernholdt and Robert Harrison at Oak Ridge National Laboratory, Marcel Nooijen at the University of Waterloo, and So Hirata at Pacific Northwest National Laboratory. Bernholdt gave the first of the consortium’s presentations on the TCE at the American Chemical Society meeting Sunday.

“The success of such an endeavor requires a team with expertise in several disciplines,” said Sadayappan, “and we are fortunate to have that -- with world renowned quantum chemists Nooijen and Harrison, Bernholdt’s expertise in developing software interfaces, Ramanujam’s expertise in compilers, and Hirata’s ability to bridge computer science and chemistry, as evidenced by his prototype TCE.”

Sadayappan also emphasized the work that many postdoctoral researchers and students have contributed to the project, both in developing the ideas and implementing the software, which now contains almost 50,000 lines of code.

Now is the time for potential users of the TCE to join with the consortium and help shape the system’s functionality, Sadayappan said. Interested scientists should contact him to attend future project meetings and participate in dialogs concerning new features.

Development of the Tensor Contraction Engine was funded by the National Science Foundation through its Information Technology Research program, with the intention that the TCE source code will be made available to researchers. The consortium members from the national laboratories have been funded by the Department of Energy.


Contact: Ponnuswamy Sadayappan, (614) 292-0053;
Sadayappan.1@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University
Further information:
http://www.osu.edu/researchnews/archive/tcengine1.htm
http://www.itr.nsf.gov/
http://www.energy.gov/engine/content.do

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Porous crystalline materials: TU Graz researcher shows method for controlled growth

07.12.2016 | Materials Sciences

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>