Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UB Engineer Creates Software to Detect and Find Leaks in International Space Station

03.09.2003


NASA will use software upon completion of space station



A new software system designed by a University at Buffalo aerospace engineer will help NASA detect and find air leaks in the International Space Station.
The software will be installed in NASA’s mission control when the manned space station is expanded from its current eight-module configuration to its final 15-module configuration, according to John L. Crassidis, associate professor of mechanical and aerospace engineering in the UB School of Engineering and Applied Sciences.

Crassidis developed the software with UB aerospace engineering graduate student Jong-Woo Kim and Adam L. Dershowitz, an engineer with United Space Alliance. Their work was funded by a $158,000 grant from NASA.



The software can determine in which module a leak has occurred and, in some cases, can pinpoint exactly where a leak is located in the module. The software also can calculate the size of the hole that caused the leakage of pressurized air from the module.

Currently, the protocol for finding a leak within the space station involves the time-consuming process of sequentially closing off each module to determine which one is the source of a leak. After a module is closed off, a change in space-station air pressure indicates whether the module was the source of the leak.

The software developed by Crassidis and team continuously monitors the space station for leaks and in less than a minute can plot possible leak locations on a diagram of the space station. In some cases, the software can show the exact location of a leak within a module, in others it will suggest two or three possible locations.

"The idea is to localize the leak," Crassidis says. "It’s a time saver for the astronauts and is a life saver, in a sense, because time is crucial when you’re dealing with a leak."

When a leak occurs, the software system detects a disturbance in the spacecraft’s behavior. The software correlates the effects of this behavior with the geometric structure of the space station. This comparison results in predictions for leak location and the size of the hole causing the leak.

"Other disturbances are always present, such as drag and solar wind," Crassidis explains. "We’ve developed very detailed models of these other disturbances, which are used to separate out these effects from the leak, thus isolating the leak disturbance."

The software can locate holes with a diameter of .4 inches and smaller, according to Crassidis. Such holes can be caused by particles of space debris traveling up to speeds of 17,000 mph. NASA tracks from the ground space debris greater than .5 inches and can direct the space station to maneuver away from incoming debris. The space station also is equipped with a shield designed to catch debris and micrometeoroids.

Crassidis’s software is intended as a backup to those systems. It also can detect leaks caused by in-space collisions, as occurred when an unmanned cargo ship collided with Russian Space Station Mir in 1997.

"NASA spends a lot of time and money making sure nothing hits the space station," Crassidis says. "This software will be part of a contingency plan if the wall of a module were to be punctured."

NASA had planned to finish the space station in 2004, but completion has been pushed back to 2008 as a result of the Columbia Space Shuttle disaster and the investigation into the cause of the tragedy.

When the space station is completed, an international crew of up to seven will live and work in space between three and six months, according to NASA. Crew return vehicles always will be attached to the space station to ensure the safe return of all crewmembers in the event of an emergency.

John Della Contrada | University at Buffalo
Further information:
http://www.buffalo.edu/news/fast-execute.cgi/article-page.html?article=63700009

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>