Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UB Engineer Creates Software to Detect and Find Leaks in International Space Station

03.09.2003


NASA will use software upon completion of space station



A new software system designed by a University at Buffalo aerospace engineer will help NASA detect and find air leaks in the International Space Station.
The software will be installed in NASA’s mission control when the manned space station is expanded from its current eight-module configuration to its final 15-module configuration, according to John L. Crassidis, associate professor of mechanical and aerospace engineering in the UB School of Engineering and Applied Sciences.

Crassidis developed the software with UB aerospace engineering graduate student Jong-Woo Kim and Adam L. Dershowitz, an engineer with United Space Alliance. Their work was funded by a $158,000 grant from NASA.



The software can determine in which module a leak has occurred and, in some cases, can pinpoint exactly where a leak is located in the module. The software also can calculate the size of the hole that caused the leakage of pressurized air from the module.

Currently, the protocol for finding a leak within the space station involves the time-consuming process of sequentially closing off each module to determine which one is the source of a leak. After a module is closed off, a change in space-station air pressure indicates whether the module was the source of the leak.

The software developed by Crassidis and team continuously monitors the space station for leaks and in less than a minute can plot possible leak locations on a diagram of the space station. In some cases, the software can show the exact location of a leak within a module, in others it will suggest two or three possible locations.

"The idea is to localize the leak," Crassidis says. "It’s a time saver for the astronauts and is a life saver, in a sense, because time is crucial when you’re dealing with a leak."

When a leak occurs, the software system detects a disturbance in the spacecraft’s behavior. The software correlates the effects of this behavior with the geometric structure of the space station. This comparison results in predictions for leak location and the size of the hole causing the leak.

"Other disturbances are always present, such as drag and solar wind," Crassidis explains. "We’ve developed very detailed models of these other disturbances, which are used to separate out these effects from the leak, thus isolating the leak disturbance."

The software can locate holes with a diameter of .4 inches and smaller, according to Crassidis. Such holes can be caused by particles of space debris traveling up to speeds of 17,000 mph. NASA tracks from the ground space debris greater than .5 inches and can direct the space station to maneuver away from incoming debris. The space station also is equipped with a shield designed to catch debris and micrometeoroids.

Crassidis’s software is intended as a backup to those systems. It also can detect leaks caused by in-space collisions, as occurred when an unmanned cargo ship collided with Russian Space Station Mir in 1997.

"NASA spends a lot of time and money making sure nothing hits the space station," Crassidis says. "This software will be part of a contingency plan if the wall of a module were to be punctured."

NASA had planned to finish the space station in 2004, but completion has been pushed back to 2008 as a result of the Columbia Space Shuttle disaster and the investigation into the cause of the tragedy.

When the space station is completed, an international crew of up to seven will live and work in space between three and six months, according to NASA. Crew return vehicles always will be attached to the space station to ensure the safe return of all crewmembers in the event of an emergency.

John Della Contrada | University at Buffalo
Further information:
http://www.buffalo.edu/news/fast-execute.cgi/article-page.html?article=63700009

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>