Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recipe for a ’Shake Gel’

28.08.2003


Chemists and computer scientists are using a special facility at the National Institute of Standards and Technology (NIST) to scale molecules up for people-sized interactions. Using chemical data, NIST software, special eyewear, and floor-to-ceiling display screens, they create giant three-dimensional molecules that move. Molecular behavior can be seen and understood in minutes instead of the weeks required using traditional techniques.



NIST scientists and collaborators used the 3D facility to study “smart gels,” inexpensive materials that expand or contract in response to external stimuli. For example, a “smart” artificial pancreas might release insulin inside the body in response to high sugar levels. Other applications may include exotic foods, cosmetics or sensors. But scientists need to better understand the molecular behavior of the gels before they can optimize them for specific products.

The NIST team is studying a category of these materials called shake gels. Mixtures of clays and polymers, these materials firm up into gels when shaken, and then gradually relax again to liquids. In a shock absorber, for instance, such materials would generally be liquid but would stiffen into a gel when the car drove over bumps or potholes.


The visualization facility helped the scientists see that it is the polymer’s oxygen atoms, not the hydrogen atoms as previously thought, that attach to the clay. The team’s theoretical calculations also showed that water binds to the clay surfaces in a perpendicular arrangement. This may help create the firmness of the gel. Described in the Aug. 28 issue of Journal of Physical Chemistry B, the work is sponsored by Kraft Foods and involves scientists from NIST, Los Alamos National Laboratory and Harvard University.

Laura Ost | NIST
Further information:
http://www.nist.gov/public_affairs/techbeat/tb2003_0827.htm#uv

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>