Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL supercomputer fastest open system in U.S.

27.08.2003


11.8T HP supercomputer with Intel Itanium2 processors running Linux reaches full operations.



The Department of Energy’s Pacific Northwest National Laboratory is now home to the United States’ fastest operational unclassified supercomputer. The laboratory’s 11.8 teraflops industry-standard HP Integrity system came to full operating power this week, marking the next advance in high-performance computing designed to enable new insights in the environmental and molecular sciences, including chemistry, biology, climate and subsurface chemistry.

Based on peak performance, the PNNL machine is the fifth fastest system in the world and is the fastest unclassified computer operating in the U.S. The laboratory ordered the supercomputer from HP in April 2002.


“Computational resources such as the PNNL supercomputer are essential to DOE’s commitment to provide the most innovative solutions to critical energy and environmental problems,” said Secretary of Energy Spencer Abraham. “DOE continues to demonstrate its competitiveness in high-performance computing capabilities by investing in new systems and new approaches to scientific inquiry.”

The PNNL system is the world’s fastest supercomputer based on the Linux operating system and is the largest machine ever built using Intel’s 64-bit architecture.

“With this machine, PNNL is providing a balanced architecture that is designed specifically for environmental, chemical and biological sciences and the priorities of DOE’s Office of Science,” said PNNL Director Len Peters. “The laboratory led the supercomputer industry by ordering one of the first large cluster systems in 1996, and has once again demonstrated that an investment in mission-focused computing can open new scientific frontiers. We’re pleased we could partner with HP on such an accomplishment.”

PNNL’s supercomputer draws its speed and computing power from nearly 2,000 next-generation Intel® Itanium®-2 processors code-named “Madison,” running on industry-standard HP Integrity servers. Linking the Intel Itanium2 chips is a Quadrics interconnect that provides communication between processors and allows scientists to sustain a high performance level. HP is providing services to customers that help manage, deploy and enhance the power and ability of supercomputing.

“HP and PNNL are working together to create next-generation technical computing solutions that will support some of the world’s most important scientific research,” said Martin Fink, vice president of Linux, HP Enterprise Servers and Storage. “The world’s fastest Linux supercomputer runs on industry-standard HP platforms and the recently unveiled Madison processor, and was created by a joint effort between PNNL and the many hardware, software and services professionals within the HP organization.”

The PNNL supercomputer is housed in the Molecular Science Computing Facility of the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE scientific user facility located at PNNL. As such, scientists from around the country can access the supercomputer for research through a competitive proposal process. The new capability will enable scientists to solve scientific problems that are more complex and do so more quickly than other architectures.

According to Scott Studham, who manages computer operations within the MSCF, “We chose the HP system during our competitive procurement process because its overall system balance was best tailored to the needs of the complex computational chemistry done at PNNL. The additional power and speed will enable novel studies in atmospheric chemistry, systems biology, catalysis and materials science.”

Proposals to use the supercomputer can be submitted through a process outlined at http://www.emsl.pnl.gov/using-emsl/. Business inquiries on PNNL research and technologies should be directed to 1-888-375-PNNL or e-mail: inquiry@pnl.gov.

Pacific Northwest National Laboratory is a Department of Energy Office of Science facility that is gaining new knowledge through fundamental research and providing science-based solutions to some of the nation’s most pressing challenges in national security, energy and environmental quality. The laboratory employs more than 3,800 scientists, engineers, technicians and support staff, and has an annual budget of nearly $600 million. Battelle, based in Columbus, Ohio, has operated PNNL since its inception in 1965 for the federal government.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the nation, manages 10 world-class national laboratories and builds and operates some of the nation’s most advanced research and development user facilities. More information about the Office of Science is available at www.science.doe.gov.

Staci Maloof | PNNL
Further information:
http://www.pnl.gov/news/2003/03-33.htm
http://www.emsl.pnl.gov/using-emsl

More articles from Information Technology:

nachricht Satellite data for agriculture
28.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>