Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL supercomputer fastest open system in U.S.

27.08.2003


11.8T HP supercomputer with Intel Itanium2 processors running Linux reaches full operations.



The Department of Energy’s Pacific Northwest National Laboratory is now home to the United States’ fastest operational unclassified supercomputer. The laboratory’s 11.8 teraflops industry-standard HP Integrity system came to full operating power this week, marking the next advance in high-performance computing designed to enable new insights in the environmental and molecular sciences, including chemistry, biology, climate and subsurface chemistry.

Based on peak performance, the PNNL machine is the fifth fastest system in the world and is the fastest unclassified computer operating in the U.S. The laboratory ordered the supercomputer from HP in April 2002.


“Computational resources such as the PNNL supercomputer are essential to DOE’s commitment to provide the most innovative solutions to critical energy and environmental problems,” said Secretary of Energy Spencer Abraham. “DOE continues to demonstrate its competitiveness in high-performance computing capabilities by investing in new systems and new approaches to scientific inquiry.”

The PNNL system is the world’s fastest supercomputer based on the Linux operating system and is the largest machine ever built using Intel’s 64-bit architecture.

“With this machine, PNNL is providing a balanced architecture that is designed specifically for environmental, chemical and biological sciences and the priorities of DOE’s Office of Science,” said PNNL Director Len Peters. “The laboratory led the supercomputer industry by ordering one of the first large cluster systems in 1996, and has once again demonstrated that an investment in mission-focused computing can open new scientific frontiers. We’re pleased we could partner with HP on such an accomplishment.”

PNNL’s supercomputer draws its speed and computing power from nearly 2,000 next-generation Intel® Itanium®-2 processors code-named “Madison,” running on industry-standard HP Integrity servers. Linking the Intel Itanium2 chips is a Quadrics interconnect that provides communication between processors and allows scientists to sustain a high performance level. HP is providing services to customers that help manage, deploy and enhance the power and ability of supercomputing.

“HP and PNNL are working together to create next-generation technical computing solutions that will support some of the world’s most important scientific research,” said Martin Fink, vice president of Linux, HP Enterprise Servers and Storage. “The world’s fastest Linux supercomputer runs on industry-standard HP platforms and the recently unveiled Madison processor, and was created by a joint effort between PNNL and the many hardware, software and services professionals within the HP organization.”

The PNNL supercomputer is housed in the Molecular Science Computing Facility of the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE scientific user facility located at PNNL. As such, scientists from around the country can access the supercomputer for research through a competitive proposal process. The new capability will enable scientists to solve scientific problems that are more complex and do so more quickly than other architectures.

According to Scott Studham, who manages computer operations within the MSCF, “We chose the HP system during our competitive procurement process because its overall system balance was best tailored to the needs of the complex computational chemistry done at PNNL. The additional power and speed will enable novel studies in atmospheric chemistry, systems biology, catalysis and materials science.”

Proposals to use the supercomputer can be submitted through a process outlined at http://www.emsl.pnl.gov/using-emsl/. Business inquiries on PNNL research and technologies should be directed to 1-888-375-PNNL or e-mail: inquiry@pnl.gov.

Pacific Northwest National Laboratory is a Department of Energy Office of Science facility that is gaining new knowledge through fundamental research and providing science-based solutions to some of the nation’s most pressing challenges in national security, energy and environmental quality. The laboratory employs more than 3,800 scientists, engineers, technicians and support staff, and has an annual budget of nearly $600 million. Battelle, based in Columbus, Ohio, has operated PNNL since its inception in 1965 for the federal government.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the nation, manages 10 world-class national laboratories and builds and operates some of the nation’s most advanced research and development user facilities. More information about the Office of Science is available at www.science.doe.gov.

Staci Maloof | PNNL
Further information:
http://www.pnl.gov/news/2003/03-33.htm
http://www.emsl.pnl.gov/using-emsl

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>